视网膜祖细胞在体外发育和成人模型的可移植细胞外基质中表现出钙粘蛋白依赖的趋化性

IF 3.1 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Miles Markey, Caroline D. Pena, T. Venkatesh, L. Cai, Maribel Vazquez
{"title":"视网膜祖细胞在体外发育和成人模型的可移植细胞外基质中表现出钙粘蛋白依赖的趋化性","authors":"Miles Markey, Caroline D. Pena, T. Venkatesh, L. Cai, Maribel Vazquez","doi":"10.1155/2023/1381620","DOIUrl":null,"url":null,"abstract":"Retinal degeneration is an escalating public health challenge, as diseases such as age-related macular degeneration, diabetic retinopathy, and retinitis pigmentosa cause irreversible vision loss in millions of adults each year. Regenerative medicine has pioneered the development of stem cell replacement therapies, which treat degeneration by replacing damaged retinal neurons with transplanted stem-like cells (SCs). While the collective migration of SCs plays critical roles during retinal development, our understanding of collective SC behaviors within biomaterials transplanted into adult tissue remains understudied. This project examines the potential therapeutic impacts of collective SC migration during transplantation by correlating the expression of cadherin, cell-cell cohesion molecules that maintain intercellular communication during development, with receptor proteins of chemoattractant molecules prevalent in degenerated adult tissue. Experiments examine these well-conserved biomechanisms by using two different model organisms: Drosophila melanogaster, a seminal model for retinal development, and Mus, an important preclinical model for transplantation. Results indicate that SCs from both animal models significantly upregulate cadherin expression to achieve more directed collective migration towards species-specific chemoattractants and exhibit longer distance motility upon different extracellular matrix substrates.","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Retinal Progenitor Cells Exhibit Cadherin-Dependent Chemotaxis across Transplantable Extracellular Matrix of In Vitro Developmental and Adult Models\",\"authors\":\"Miles Markey, Caroline D. Pena, T. Venkatesh, L. Cai, Maribel Vazquez\",\"doi\":\"10.1155/2023/1381620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Retinal degeneration is an escalating public health challenge, as diseases such as age-related macular degeneration, diabetic retinopathy, and retinitis pigmentosa cause irreversible vision loss in millions of adults each year. Regenerative medicine has pioneered the development of stem cell replacement therapies, which treat degeneration by replacing damaged retinal neurons with transplanted stem-like cells (SCs). While the collective migration of SCs plays critical roles during retinal development, our understanding of collective SC behaviors within biomaterials transplanted into adult tissue remains understudied. This project examines the potential therapeutic impacts of collective SC migration during transplantation by correlating the expression of cadherin, cell-cell cohesion molecules that maintain intercellular communication during development, with receptor proteins of chemoattractant molecules prevalent in degenerated adult tissue. Experiments examine these well-conserved biomechanisms by using two different model organisms: Drosophila melanogaster, a seminal model for retinal development, and Mus, an important preclinical model for transplantation. Results indicate that SCs from both animal models significantly upregulate cadherin expression to achieve more directed collective migration towards species-specific chemoattractants and exhibit longer distance motility upon different extracellular matrix substrates.\",\"PeriodicalId\":202,\"journal\":{\"name\":\"Journal of Tissue Engineering and Regenerative Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Tissue Engineering and Regenerative Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/1381620\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tissue Engineering and Regenerative Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/1381620","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

视网膜变性是一个不断升级的公共卫生挑战,因为诸如年龄相关性黄斑变性、糖尿病性视网膜病变和视网膜色素变性等疾病每年导致数百万成年人不可逆转的视力丧失。再生医学开创了干细胞替代疗法的发展,这种疗法通过移植的干细胞样细胞(SCs)替代受损的视网膜神经元来治疗变性。虽然SC的集体迁移在视网膜发育过程中起着关键作用,但我们对移植到成人组织的生物材料中的SC集体行为的理解仍未得到充分研究。本项目通过钙粘蛋白的表达(在发育过程中维持细胞间通讯的细胞-细胞内聚分子)与变性成人组织中普遍存在的趋化分子受体蛋白的相关性,研究移植过程中SC集体迁移的潜在治疗影响。实验通过使用两种不同的模式生物来检验这些保守的生物机制:黑腹果蝇(一种视网膜发育的种子模型)和鼠(一种重要的临床前移植模型)。结果表明,来自两种动物模型的SCs均显著上调钙粘蛋白表达,从而实现更定向的向物种特异性化学引诱剂的集体迁移,并在不同的细胞外基质基质上表现出更长的距离运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Retinal Progenitor Cells Exhibit Cadherin-Dependent Chemotaxis across Transplantable Extracellular Matrix of In Vitro Developmental and Adult Models
Retinal degeneration is an escalating public health challenge, as diseases such as age-related macular degeneration, diabetic retinopathy, and retinitis pigmentosa cause irreversible vision loss in millions of adults each year. Regenerative medicine has pioneered the development of stem cell replacement therapies, which treat degeneration by replacing damaged retinal neurons with transplanted stem-like cells (SCs). While the collective migration of SCs plays critical roles during retinal development, our understanding of collective SC behaviors within biomaterials transplanted into adult tissue remains understudied. This project examines the potential therapeutic impacts of collective SC migration during transplantation by correlating the expression of cadherin, cell-cell cohesion molecules that maintain intercellular communication during development, with receptor proteins of chemoattractant molecules prevalent in degenerated adult tissue. Experiments examine these well-conserved biomechanisms by using two different model organisms: Drosophila melanogaster, a seminal model for retinal development, and Mus, an important preclinical model for transplantation. Results indicate that SCs from both animal models significantly upregulate cadherin expression to achieve more directed collective migration towards species-specific chemoattractants and exhibit longer distance motility upon different extracellular matrix substrates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
3.00%
发文量
97
审稿时长
4-8 weeks
期刊介绍: Journal of Tissue Engineering and Regenerative Medicine publishes rapidly and rigorously peer-reviewed research papers, reviews, clinical case reports, perspectives, and short communications on topics relevant to the development of therapeutic approaches which combine stem or progenitor cells, biomaterials and scaffolds, growth factors and other bioactive agents, and their respective constructs. All papers should deal with research that has a direct or potential impact on the development of novel clinical approaches for the regeneration or repair of tissues and organs. The journal is multidisciplinary, covering the combination of the principles of life sciences and engineering in efforts to advance medicine and clinical strategies. The journal focuses on the use of cells, materials, and biochemical/mechanical factors in the development of biological functional substitutes that restore, maintain, or improve tissue or organ function. The journal publishes research on any tissue or organ and covers all key aspects of the field, including the development of new biomaterials and processing of scaffolds; the use of different types of cells (mainly stem and progenitor cells) and their culture in specific bioreactors; studies in relevant animal models; and clinical trials in human patients performed under strict regulatory and ethical frameworks. Manuscripts describing the use of advanced methods for the characterization of engineered tissues are also of special interest to the journal readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信