{"title":"电网络,拉格朗日格拉斯曼和辛群","authors":"B. Bychkov, V. Gorbounov, A. Kazakov, D. Talalaev","doi":"10.17323/1609-4514-2023-23-2-133-167","DOIUrl":null,"url":null,"abstract":"We refine the result of T. Lam \\cite{L} on embedding the space $E_n$ of electrical networks on a planar graph with $n$ boundary points into the totally non-negative Grassmannian $\\mathrm{Gr}_{\\geq 0}(n-1,2n)$ by proving first that the image lands in $\\mathrm{Gr}(n-1,V)\\subset \\mathrm{Gr}(n-1,2n)$ where $V\\subset \\mathbb{R}^{2n}$ is a certain subspace of dimension $2n-2$. The role of this reduction in the dimension of the ambient space is crucial for us. We show next that the image lands in fact inside the Lagrangian Grassmannian $\\mathrm{LG}(n-1,V)\\subset \\mathrm{Gr}(n-1,V)$. As it is well known $\\mathrm{LG}(n-1)$ can be identified with $\\mathrm{Gr}(n-1,2n-2)\\cap \\mathbb{P} L$ where $L\\subset \\bigwedge^{n-1}\\mathbb R^{2n-2}$ is a subspace of dimension equal to the Catalan number $C_n$, moreover it is the space of the fundamental representation of the symplectic group $Sp(2n-2)$ which corresponds to the last vertex of the Dynkin diagram. We show further that the linear relations cutting the image of $E_n$ out of $\\mathrm{Gr}(n-1,2n)$ found in \\cite{L} define that space $L$. This connects the combinatorial description of $E_n$ discovered in \\cite{L} and representation theory of the symplectic group.","PeriodicalId":54736,"journal":{"name":"Moscow Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Electrical Networks, Lagrangian Grassmannians, and Symplectic Groups\",\"authors\":\"B. Bychkov, V. Gorbounov, A. Kazakov, D. Talalaev\",\"doi\":\"10.17323/1609-4514-2023-23-2-133-167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We refine the result of T. Lam \\\\cite{L} on embedding the space $E_n$ of electrical networks on a planar graph with $n$ boundary points into the totally non-negative Grassmannian $\\\\mathrm{Gr}_{\\\\geq 0}(n-1,2n)$ by proving first that the image lands in $\\\\mathrm{Gr}(n-1,V)\\\\subset \\\\mathrm{Gr}(n-1,2n)$ where $V\\\\subset \\\\mathbb{R}^{2n}$ is a certain subspace of dimension $2n-2$. The role of this reduction in the dimension of the ambient space is crucial for us. We show next that the image lands in fact inside the Lagrangian Grassmannian $\\\\mathrm{LG}(n-1,V)\\\\subset \\\\mathrm{Gr}(n-1,V)$. As it is well known $\\\\mathrm{LG}(n-1)$ can be identified with $\\\\mathrm{Gr}(n-1,2n-2)\\\\cap \\\\mathbb{P} L$ where $L\\\\subset \\\\bigwedge^{n-1}\\\\mathbb R^{2n-2}$ is a subspace of dimension equal to the Catalan number $C_n$, moreover it is the space of the fundamental representation of the symplectic group $Sp(2n-2)$ which corresponds to the last vertex of the Dynkin diagram. We show further that the linear relations cutting the image of $E_n$ out of $\\\\mathrm{Gr}(n-1,2n)$ found in \\\\cite{L} define that space $L$. This connects the combinatorial description of $E_n$ discovered in \\\\cite{L} and representation theory of the symplectic group.\",\"PeriodicalId\":54736,\"journal\":{\"name\":\"Moscow Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.17323/1609-4514-2023-23-2-133-167\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.17323/1609-4514-2023-23-2-133-167","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Electrical Networks, Lagrangian Grassmannians, and Symplectic Groups
We refine the result of T. Lam \cite{L} on embedding the space $E_n$ of electrical networks on a planar graph with $n$ boundary points into the totally non-negative Grassmannian $\mathrm{Gr}_{\geq 0}(n-1,2n)$ by proving first that the image lands in $\mathrm{Gr}(n-1,V)\subset \mathrm{Gr}(n-1,2n)$ where $V\subset \mathbb{R}^{2n}$ is a certain subspace of dimension $2n-2$. The role of this reduction in the dimension of the ambient space is crucial for us. We show next that the image lands in fact inside the Lagrangian Grassmannian $\mathrm{LG}(n-1,V)\subset \mathrm{Gr}(n-1,V)$. As it is well known $\mathrm{LG}(n-1)$ can be identified with $\mathrm{Gr}(n-1,2n-2)\cap \mathbb{P} L$ where $L\subset \bigwedge^{n-1}\mathbb R^{2n-2}$ is a subspace of dimension equal to the Catalan number $C_n$, moreover it is the space of the fundamental representation of the symplectic group $Sp(2n-2)$ which corresponds to the last vertex of the Dynkin diagram. We show further that the linear relations cutting the image of $E_n$ out of $\mathrm{Gr}(n-1,2n)$ found in \cite{L} define that space $L$. This connects the combinatorial description of $E_n$ discovered in \cite{L} and representation theory of the symplectic group.
期刊介绍:
The Moscow Mathematical Journal (MMJ) is an international quarterly published (paper and electronic) by the Independent University of Moscow and the department of mathematics of the Higher School of Economics, and distributed by the American Mathematical Society. MMJ presents highest quality research and research-expository papers in mathematics from all over the world. Its purpose is to bring together different branches of our science and to achieve the broadest possible outlook on mathematics, characteristic of the Moscow mathematical school in general and of the Independent University of Moscow in particular.
An important specific trait of the journal is that it especially encourages research-expository papers, which must contain new important results and include detailed introductions, placing the achievements in the context of other studies and explaining the motivation behind the research. The aim is to make the articles — at least the formulation of the main results and their significance — understandable to a wide mathematical audience rather than to a narrow class of specialists.