测量专业人员的机器学习素养:实践教程

IF 2.7 4区 教育学 Q1 EDUCATION & EDUCATIONAL RESEARCH
Rui Nie, Qi Guo, Maxim Morin
{"title":"测量专业人员的机器学习素养:实践教程","authors":"Rui Nie,&nbsp;Qi Guo,&nbsp;Maxim Morin","doi":"10.1111/emip.12539","DOIUrl":null,"url":null,"abstract":"<p>The COVID-19 pandemic has accelerated the digitalization of assessment, creating new challenges for measurement professionals, including big data management, test security, and analyzing new validity evidence. In response to these challenges, <i>Machine Learning</i> (ML) emerges as an increasingly important skill in the toolbox of measurement professionals in this new era. However, most ML tutorials are technical and conceptual-focused. Therefore, this tutorial aims to provide a practical introduction to ML in the context of educational measurement. We also supplement our tutorial with several examples of supervised and unsupervised ML techniques applied to marking a short-answer question. Python codes are available on GitHub. In the end, common misconceptions about ML are discussed.</p>","PeriodicalId":47345,"journal":{"name":"Educational Measurement-Issues and Practice","volume":"42 1","pages":"9-23"},"PeriodicalIF":2.7000,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Machine Learning Literacy for Measurement Professionals: A Practical Tutorial\",\"authors\":\"Rui Nie,&nbsp;Qi Guo,&nbsp;Maxim Morin\",\"doi\":\"10.1111/emip.12539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The COVID-19 pandemic has accelerated the digitalization of assessment, creating new challenges for measurement professionals, including big data management, test security, and analyzing new validity evidence. In response to these challenges, <i>Machine Learning</i> (ML) emerges as an increasingly important skill in the toolbox of measurement professionals in this new era. However, most ML tutorials are technical and conceptual-focused. Therefore, this tutorial aims to provide a practical introduction to ML in the context of educational measurement. We also supplement our tutorial with several examples of supervised and unsupervised ML techniques applied to marking a short-answer question. Python codes are available on GitHub. In the end, common misconceptions about ML are discussed.</p>\",\"PeriodicalId\":47345,\"journal\":{\"name\":\"Educational Measurement-Issues and Practice\",\"volume\":\"42 1\",\"pages\":\"9-23\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Educational Measurement-Issues and Practice\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/emip.12539\",\"RegionNum\":4,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Educational Measurement-Issues and Practice","FirstCategoryId":"95","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/emip.12539","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 1

摘要

2019冠状病毒病大流行加速了评估的数字化,给测量专业人员带来了新的挑战,包括大数据管理、测试安全性和分析新的有效性证据。为了应对这些挑战,机器学习(ML)在这个新时代成为测量专业人员工具箱中越来越重要的技能。然而,大多数ML教程都是以技术和概念为中心的。因此,本教程的目的是在教育测量的背景下提供ML的实用介绍。我们还用几个例子来补充我们的教程,这些例子是应用于标记简短回答问题的有监督和无监督ML技术。Python代码可在GitHub上获得。最后,讨论了关于机器学习的常见误解。©2023国家教育计量委员会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning Literacy for Measurement Professionals: A Practical Tutorial

The COVID-19 pandemic has accelerated the digitalization of assessment, creating new challenges for measurement professionals, including big data management, test security, and analyzing new validity evidence. In response to these challenges, Machine Learning (ML) emerges as an increasingly important skill in the toolbox of measurement professionals in this new era. However, most ML tutorials are technical and conceptual-focused. Therefore, this tutorial aims to provide a practical introduction to ML in the context of educational measurement. We also supplement our tutorial with several examples of supervised and unsupervised ML techniques applied to marking a short-answer question. Python codes are available on GitHub. In the end, common misconceptions about ML are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
15.00%
发文量
47
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信