{"title":"热处理木材增强高密度聚乙烯复合材料","authors":"K. Karakuş, D. Aydemir, G. Gunduz, F. Mengeloglu","doi":"10.5552/drvind.2021.1971","DOIUrl":null,"url":null,"abstract":"This study investigated the effect of untreated and heat-treated ash and black pine wood flour concentrations on the selected properties of high density polyethylene (HDPE) composites. HDPE and wood flour were used as thermoplastic matrix and filler, respectively. The blends of HDPE and wood fl our were compounded using single screw extruder and test samples were prepared through injection molding. Mechanical properties like tensile strength (TS), tensile modulus (TM), elongation at break (EatB), fl exural strength (FS), fl exural modulus (FM) and impact strength (IS) of manufactured composites were determined. Wood fl our concentrations have significantly increased density, FS, TM and FM and hardness of composites while reducing TS, EatB and IS. Heat-treated ash and black pine fl our reinforced HDPE composites had higher mechanical properties than untreated ones. Composites showed two main decomposition peaks; one coming from ash wood flour (353-370 °C) and black pine wood fl our (373-376 °C), the second one from HDPE degradation (469-490 °C). SEM images showed improved dispersion of heat-treated ash and black pine wood flour. The obtained results showed that both the untreated and heat-treated ash/black pine wood flour have an important potential in the manufacture of HDPE composites.","PeriodicalId":11427,"journal":{"name":"Drvna Industrija","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heat-Treated Wood Reinforced High Density Polyethylene Composites\",\"authors\":\"K. Karakuş, D. Aydemir, G. Gunduz, F. Mengeloglu\",\"doi\":\"10.5552/drvind.2021.1971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigated the effect of untreated and heat-treated ash and black pine wood flour concentrations on the selected properties of high density polyethylene (HDPE) composites. HDPE and wood flour were used as thermoplastic matrix and filler, respectively. The blends of HDPE and wood fl our were compounded using single screw extruder and test samples were prepared through injection molding. Mechanical properties like tensile strength (TS), tensile modulus (TM), elongation at break (EatB), fl exural strength (FS), fl exural modulus (FM) and impact strength (IS) of manufactured composites were determined. Wood fl our concentrations have significantly increased density, FS, TM and FM and hardness of composites while reducing TS, EatB and IS. Heat-treated ash and black pine fl our reinforced HDPE composites had higher mechanical properties than untreated ones. Composites showed two main decomposition peaks; one coming from ash wood flour (353-370 °C) and black pine wood fl our (373-376 °C), the second one from HDPE degradation (469-490 °C). SEM images showed improved dispersion of heat-treated ash and black pine wood flour. The obtained results showed that both the untreated and heat-treated ash/black pine wood flour have an important potential in the manufacture of HDPE composites.\",\"PeriodicalId\":11427,\"journal\":{\"name\":\"Drvna Industrija\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drvna Industrija\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.5552/drvind.2021.1971\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drvna Industrija","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.5552/drvind.2021.1971","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
Heat-Treated Wood Reinforced High Density Polyethylene Composites
This study investigated the effect of untreated and heat-treated ash and black pine wood flour concentrations on the selected properties of high density polyethylene (HDPE) composites. HDPE and wood flour were used as thermoplastic matrix and filler, respectively. The blends of HDPE and wood fl our were compounded using single screw extruder and test samples were prepared through injection molding. Mechanical properties like tensile strength (TS), tensile modulus (TM), elongation at break (EatB), fl exural strength (FS), fl exural modulus (FM) and impact strength (IS) of manufactured composites were determined. Wood fl our concentrations have significantly increased density, FS, TM and FM and hardness of composites while reducing TS, EatB and IS. Heat-treated ash and black pine fl our reinforced HDPE composites had higher mechanical properties than untreated ones. Composites showed two main decomposition peaks; one coming from ash wood flour (353-370 °C) and black pine wood fl our (373-376 °C), the second one from HDPE degradation (469-490 °C). SEM images showed improved dispersion of heat-treated ash and black pine wood flour. The obtained results showed that both the untreated and heat-treated ash/black pine wood flour have an important potential in the manufacture of HDPE composites.
期刊介绍:
"Drvna industrija" ("Wood Industry") journal publishes original scientific and review papers, short notes, professional papers, conference papers, reports, professional information, bibliographical and survey articles and general notes relating to the forestry exploitation, biology, chemistry, physics and technology of wood, pulp and paper and wood components, including production, management and marketing aspects in the woodworking industry.