{"title":"云南松地上生物量估算的比较算法","authors":"Tianbao Huang, Guanglong Ou, Hui Xu, Xiaoli Zhang, Yong Wu, Zihao Liu, Fuyan Zou, Chen Zhang, Can Xu","doi":"10.3390/f14091742","DOIUrl":null,"url":null,"abstract":"Comparing algorithms are crucial for enhancing the accuracy of remote sensing estimations of forest biomass in regions with high heterogeneity. Herein, Sentinel 2A, Sentinel 1A, Landsat 8 OLI, and Digital Elevation Model (DEM) were selected as data sources. A total of 12 algorithms, including 7 types of learners, were utilized for estimating the aboveground biomass (AGB) of Pinus yunnanensis forest. The results showed that: (1) The optimal algorithm (Extreme Gradient Boosting, XGBoost) was selected as the meta-model (referred to as XGBoost-stacking) of the stacking ensemble algorithm, which integrated 11 other algorithms. The R2 value was improved by 0.12 up to 0.61, and RMSE was decreased by 4.53 Mg/ha down to 39.34 Mg/ha compared to the XGBoost. All algorithms consistently showed severe underestimation of AGB in the Pinus yunnanensis forest of Yunnan Province when AGB exceeded 100 Mg/ha. (2) XGBoost-Stacking, XGBoost, BRNN (Bayesian Regularized Neural Network), RF (Random Forest), and QRF (Quantile Random Forest) have good sensitivity to forest AGB. QRNN (Quantile Regression Neural Network), GP (Gaussian Process), and EN (Elastic Network) have more outlier data and their robustness was poor. SVM-RBF (Radial Basis Function Kernel Support Vector Machine), k-NN (K Nearest Neighbors), and SGB (Stochastic Gradient Boosting) algorithms have good robustness, but their sensitivity was poor, and QRF algorithms and BRNN algorithm can estimate low values with higher accuracy. In conclusion, the XGBoost-stacking, XGBoost, and BRNN algorithms have shown promising application prospects in remote sensing estimation of forest biomass. This study could provide a reference for selecting the suitable algorithm for forest AGB estimation.","PeriodicalId":12339,"journal":{"name":"Forests","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparing Algorithms for Estimation of Aboveground Biomass in Pinus yunnanensis\",\"authors\":\"Tianbao Huang, Guanglong Ou, Hui Xu, Xiaoli Zhang, Yong Wu, Zihao Liu, Fuyan Zou, Chen Zhang, Can Xu\",\"doi\":\"10.3390/f14091742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Comparing algorithms are crucial for enhancing the accuracy of remote sensing estimations of forest biomass in regions with high heterogeneity. Herein, Sentinel 2A, Sentinel 1A, Landsat 8 OLI, and Digital Elevation Model (DEM) were selected as data sources. A total of 12 algorithms, including 7 types of learners, were utilized for estimating the aboveground biomass (AGB) of Pinus yunnanensis forest. The results showed that: (1) The optimal algorithm (Extreme Gradient Boosting, XGBoost) was selected as the meta-model (referred to as XGBoost-stacking) of the stacking ensemble algorithm, which integrated 11 other algorithms. The R2 value was improved by 0.12 up to 0.61, and RMSE was decreased by 4.53 Mg/ha down to 39.34 Mg/ha compared to the XGBoost. All algorithms consistently showed severe underestimation of AGB in the Pinus yunnanensis forest of Yunnan Province when AGB exceeded 100 Mg/ha. (2) XGBoost-Stacking, XGBoost, BRNN (Bayesian Regularized Neural Network), RF (Random Forest), and QRF (Quantile Random Forest) have good sensitivity to forest AGB. QRNN (Quantile Regression Neural Network), GP (Gaussian Process), and EN (Elastic Network) have more outlier data and their robustness was poor. SVM-RBF (Radial Basis Function Kernel Support Vector Machine), k-NN (K Nearest Neighbors), and SGB (Stochastic Gradient Boosting) algorithms have good robustness, but their sensitivity was poor, and QRF algorithms and BRNN algorithm can estimate low values with higher accuracy. In conclusion, the XGBoost-stacking, XGBoost, and BRNN algorithms have shown promising application prospects in remote sensing estimation of forest biomass. This study could provide a reference for selecting the suitable algorithm for forest AGB estimation.\",\"PeriodicalId\":12339,\"journal\":{\"name\":\"Forests\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forests\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/f14091742\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forests","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/f14091742","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
摘要
比较算法是提高异质性高地区森林生物量遥感估算精度的关键。本文选取Sentinel 2A、Sentinel 1A、Landsat 8 OLI和Digital Elevation Model (DEM)作为数据源。采用7种学习器共12种算法对云南松林地上生物量(AGB)进行估算。结果表明:(1)选择最优算法(Extreme Gradient Boosting, XGBoost)作为叠加集成算法的元模型(简称XGBoost-stacking),该算法集成了其他11种算法。与XGBoost相比,R2值提高了0.12至0.61,RMSE降低了4.53 Mg/ha至39.34 Mg/ha。当AGB超过100 Mg/ha时,所有算法均显示云南松林AGB严重低估。(2) XGBoost- stacking、XGBoost、BRNN(贝叶斯正则化神经网络)、RF(随机森林)和QRF(分位数随机森林)对森林AGB具有较好的敏感性。QRNN(分位数回归神经网络)、GP(高斯过程)和EN(弹性网络)的离群数据较多,鲁棒性较差。SVM-RBF (Radial Basis Function Kernel Support Vector Machine)、K - nn (K Nearest Neighbors)和SGB (Stochastic Gradient Boosting)算法鲁棒性较好,但灵敏度较差,QRF算法和BRNN算法对低值的估计精度较高。综上所述,XGBoost-stacking、XGBoost和BRNN算法在森林生物量遥感估算中具有广阔的应用前景。该研究可为选择合适的森林AGB估计算法提供参考。
Comparing Algorithms for Estimation of Aboveground Biomass in Pinus yunnanensis
Comparing algorithms are crucial for enhancing the accuracy of remote sensing estimations of forest biomass in regions with high heterogeneity. Herein, Sentinel 2A, Sentinel 1A, Landsat 8 OLI, and Digital Elevation Model (DEM) were selected as data sources. A total of 12 algorithms, including 7 types of learners, were utilized for estimating the aboveground biomass (AGB) of Pinus yunnanensis forest. The results showed that: (1) The optimal algorithm (Extreme Gradient Boosting, XGBoost) was selected as the meta-model (referred to as XGBoost-stacking) of the stacking ensemble algorithm, which integrated 11 other algorithms. The R2 value was improved by 0.12 up to 0.61, and RMSE was decreased by 4.53 Mg/ha down to 39.34 Mg/ha compared to the XGBoost. All algorithms consistently showed severe underestimation of AGB in the Pinus yunnanensis forest of Yunnan Province when AGB exceeded 100 Mg/ha. (2) XGBoost-Stacking, XGBoost, BRNN (Bayesian Regularized Neural Network), RF (Random Forest), and QRF (Quantile Random Forest) have good sensitivity to forest AGB. QRNN (Quantile Regression Neural Network), GP (Gaussian Process), and EN (Elastic Network) have more outlier data and their robustness was poor. SVM-RBF (Radial Basis Function Kernel Support Vector Machine), k-NN (K Nearest Neighbors), and SGB (Stochastic Gradient Boosting) algorithms have good robustness, but their sensitivity was poor, and QRF algorithms and BRNN algorithm can estimate low values with higher accuracy. In conclusion, the XGBoost-stacking, XGBoost, and BRNN algorithms have shown promising application prospects in remote sensing estimation of forest biomass. This study could provide a reference for selecting the suitable algorithm for forest AGB estimation.
期刊介绍:
Forests (ISSN 1999-4907) is an international and cross-disciplinary scholarly journal of forestry and forest ecology. It publishes research papers, short communications and review papers. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.