{"title":"有效界面电荷转移对MWCNTs-CdS复合材料可见光催化响应的影响","authors":"Rajesh Sahu , Tarun Patodia , Dinesh Yadav , S.K. Jain , Balram Tripathi","doi":"10.1016/j.mlblux.2021.100116","DOIUrl":null,"url":null,"abstract":"<div><p>In the present manuscript visible light induced photo catalytic performance of MWCNTs intercalated CdS nanocomposites has been studied. Methylene blue (MB) organic dye has been used as a probe for determination of catalytic performance. XRD spectra confirms hexagonal structure with average particle size distribution between 10 and 20 nm. SEM images confirm close contact between MWCNTs and CdS with quasi spherical shape. UV–Vis spectra confirms enhanced optical absorption and photocatalytic adsorption. The observed photocatalytic activity was enhanced by 2.6 times attributed the heterojunction between MWCNTs and CdS may lead an enhanced separation efficiency of photo generated e/h pairs.</p></div>","PeriodicalId":18245,"journal":{"name":"Materials Letters: X","volume":"13 ","pages":"Article 100116"},"PeriodicalIF":2.2000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590150821000570/pdfft?md5=8d5b98d69504b74050b1b9d86ccbf050&pid=1-s2.0-S2590150821000570-main.pdf","citationCount":"2","resultStr":"{\"title\":\"Visible-light induced photo catalytic response of MWCNTs-CdS composites via efficient interfacial charge transfer\",\"authors\":\"Rajesh Sahu , Tarun Patodia , Dinesh Yadav , S.K. Jain , Balram Tripathi\",\"doi\":\"10.1016/j.mlblux.2021.100116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the present manuscript visible light induced photo catalytic performance of MWCNTs intercalated CdS nanocomposites has been studied. Methylene blue (MB) organic dye has been used as a probe for determination of catalytic performance. XRD spectra confirms hexagonal structure with average particle size distribution between 10 and 20 nm. SEM images confirm close contact between MWCNTs and CdS with quasi spherical shape. UV–Vis spectra confirms enhanced optical absorption and photocatalytic adsorption. The observed photocatalytic activity was enhanced by 2.6 times attributed the heterojunction between MWCNTs and CdS may lead an enhanced separation efficiency of photo generated e/h pairs.</p></div>\",\"PeriodicalId\":18245,\"journal\":{\"name\":\"Materials Letters: X\",\"volume\":\"13 \",\"pages\":\"Article 100116\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590150821000570/pdfft?md5=8d5b98d69504b74050b1b9d86ccbf050&pid=1-s2.0-S2590150821000570-main.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Letters: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590150821000570\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Letters: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590150821000570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Visible-light induced photo catalytic response of MWCNTs-CdS composites via efficient interfacial charge transfer
In the present manuscript visible light induced photo catalytic performance of MWCNTs intercalated CdS nanocomposites has been studied. Methylene blue (MB) organic dye has been used as a probe for determination of catalytic performance. XRD spectra confirms hexagonal structure with average particle size distribution between 10 and 20 nm. SEM images confirm close contact between MWCNTs and CdS with quasi spherical shape. UV–Vis spectra confirms enhanced optical absorption and photocatalytic adsorption. The observed photocatalytic activity was enhanced by 2.6 times attributed the heterojunction between MWCNTs and CdS may lead an enhanced separation efficiency of photo generated e/h pairs.