D. Ferone, P. Festa, Serena Fugaro, Tommaso Pastore
{"title":"资源约束的聚类最短路径树问题:数学公式和Branch&Price求解算法","authors":"D. Ferone, P. Festa, Serena Fugaro, Tommaso Pastore","doi":"10.1002/net.22124","DOIUrl":null,"url":null,"abstract":"In this article, the Resource Constrained Clustered Shortest Path Tree Problem is defined. It generalizes the classic Resource Constrained Shortest Path Tree Problem since it is defined on an undirected, complete and weighted graph whose set of nodes is partitioned into clusters. The aim is then to find a shortest path tree respecting some resource consumption constraints and inducing a connected subgraph within each cluster. The main support and motivation for studying this problem are related, among the others, to the design of telecommunication networks, and to Disaster Operations Management. In this work, we present a path‐based formulation for the problem, addressing the case of local resource constraints, that is, resource constraints on single paths. For its resolution, a Branch&Price algorithm featuring a Column Generation approach with Multiple Pricing Scheme is devised. A comprehensive computational study is conducted, comparing the proposed method with the results achieved by the CPLEX solver, adopted to solve the mathematical model. The numerical results underline that the Branch&Price algorithm outperforms CPLEX, both in terms of solution cost and time.","PeriodicalId":54734,"journal":{"name":"Networks","volume":"81 1","pages":"204 - 219"},"PeriodicalIF":1.6000,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The resource constrained clustered shortest path tree problem: Mathematical formulation and Branch&Price solution algorithm\",\"authors\":\"D. Ferone, P. Festa, Serena Fugaro, Tommaso Pastore\",\"doi\":\"10.1002/net.22124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, the Resource Constrained Clustered Shortest Path Tree Problem is defined. It generalizes the classic Resource Constrained Shortest Path Tree Problem since it is defined on an undirected, complete and weighted graph whose set of nodes is partitioned into clusters. The aim is then to find a shortest path tree respecting some resource consumption constraints and inducing a connected subgraph within each cluster. The main support and motivation for studying this problem are related, among the others, to the design of telecommunication networks, and to Disaster Operations Management. In this work, we present a path‐based formulation for the problem, addressing the case of local resource constraints, that is, resource constraints on single paths. For its resolution, a Branch&Price algorithm featuring a Column Generation approach with Multiple Pricing Scheme is devised. A comprehensive computational study is conducted, comparing the proposed method with the results achieved by the CPLEX solver, adopted to solve the mathematical model. The numerical results underline that the Branch&Price algorithm outperforms CPLEX, both in terms of solution cost and time.\",\"PeriodicalId\":54734,\"journal\":{\"name\":\"Networks\",\"volume\":\"81 1\",\"pages\":\"204 - 219\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/net.22124\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/net.22124","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
The resource constrained clustered shortest path tree problem: Mathematical formulation and Branch&Price solution algorithm
In this article, the Resource Constrained Clustered Shortest Path Tree Problem is defined. It generalizes the classic Resource Constrained Shortest Path Tree Problem since it is defined on an undirected, complete and weighted graph whose set of nodes is partitioned into clusters. The aim is then to find a shortest path tree respecting some resource consumption constraints and inducing a connected subgraph within each cluster. The main support and motivation for studying this problem are related, among the others, to the design of telecommunication networks, and to Disaster Operations Management. In this work, we present a path‐based formulation for the problem, addressing the case of local resource constraints, that is, resource constraints on single paths. For its resolution, a Branch&Price algorithm featuring a Column Generation approach with Multiple Pricing Scheme is devised. A comprehensive computational study is conducted, comparing the proposed method with the results achieved by the CPLEX solver, adopted to solve the mathematical model. The numerical results underline that the Branch&Price algorithm outperforms CPLEX, both in terms of solution cost and time.
期刊介绍:
Network problems are pervasive in our modern technological society, as witnessed by our reliance on physical networks that provide power, communication, and transportation. As well, a number of processes can be modeled using logical networks, as in the scheduling of interdependent tasks, the dating of archaeological artifacts, or the compilation of subroutines comprising a large computer program. Networks provide a common framework for posing and studying problems that often have wider applicability than their originating context.
The goal of this journal is to provide a central forum for the distribution of timely information about network problems, their design and mathematical analysis, as well as efficient algorithms for carrying out optimization on networks. The nonstandard modeling of diverse processes using networks and network concepts is also of interest. Consequently, the disciplines that are useful in studying networks are varied, including applied mathematics, operations research, computer science, discrete mathematics, and economics.
Networks publishes material on the analytic modeling of problems using networks, the mathematical analysis of network problems, the design of computationally efficient network algorithms, and innovative case studies of successful network applications. We do not typically publish works that fall in the realm of pure graph theory (without significant algorithmic and modeling contributions) or papers that deal with engineering aspects of network design. Since the audience for this journal is then necessarily broad, articles that impact multiple application areas or that creatively use new or existing methodologies are especially appropriate. We seek to publish original, well-written research papers that make a substantive contribution to the knowledge base. In addition, tutorial and survey articles are welcomed. All manuscripts are carefully refereed.