{"title":"降雨和湖泊海拔与厄尔湖和托洛瓦泻湖系统破裂事件相关的时间序列模型,加利福尼亚北部沿海","authors":"R. M. Sullivan","doi":"10.51492/cfwj.108.20","DOIUrl":null,"url":null,"abstract":"I evaluated trends in spatial and temporal variability in historical levels of rainfall, water elevation, and breach events for lakes Earl, Tolowa, and their combined lagoon system along the coast of northern California. I examined the efficacy of time series analyses to model and forecast rainfall and lake elevation at a regional scale from 2008 to 2021. I employed semi-parametric Generalized Additive Model regression to investigate the historical relationship between anthropogenic breaching of the lagoon and simultaneous occurrences of environmental parameters to better understand conditions surrounding each breach event. Evaluation of the central tendency of rainfall and surface lake elevation showed high fluctuations in their mean, positive skewed, and leptokurtic curves. Augmented Dickey-Fuller tests found that seasonal rainfall was stationary, but surface lake elevation attained stationarity only after the first seasonal difference. Decomposition of each time series and MannKendall and Sen’s slope estimators, found a significant decreasing trend in seasonal surface lake elevation but no trend was found in rainfall. Seasonal Autoregressive Integrated Moving Average (SARIMA) time series analysis and diagnostic tests of stability and reliability found best fit models for rainfall (SARIMA[1,0,0] [2,1,1]12) and surface lake elevation (SARIMA [1,1,2] [1,0,0]12) used to forecast future values for each parameter. Multiple regression of variables obtained at each breach event showed that the proportion of variance (55.0%) and null deviance (72.1%) explained by the combination of rainfall, hightide, and wave height was the “best” model with the lowest Generalized Cross-Validation statistic of all other models evaluated. All models agreed that rainfall was the most significant factor within each set of predictor attributes used to model surface lake elevation. A declining trend in surface elevation in combination with variation in the historical area and extent of wetland plant communities may be attributable to systematic breaching of the lagoon annually.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time series modeling of rainfall and lake elevation in relation to breaching events at the Lake Earl and Tolowa lagoon system, coastal northern California\",\"authors\":\"R. M. Sullivan\",\"doi\":\"10.51492/cfwj.108.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"I evaluated trends in spatial and temporal variability in historical levels of rainfall, water elevation, and breach events for lakes Earl, Tolowa, and their combined lagoon system along the coast of northern California. I examined the efficacy of time series analyses to model and forecast rainfall and lake elevation at a regional scale from 2008 to 2021. I employed semi-parametric Generalized Additive Model regression to investigate the historical relationship between anthropogenic breaching of the lagoon and simultaneous occurrences of environmental parameters to better understand conditions surrounding each breach event. Evaluation of the central tendency of rainfall and surface lake elevation showed high fluctuations in their mean, positive skewed, and leptokurtic curves. Augmented Dickey-Fuller tests found that seasonal rainfall was stationary, but surface lake elevation attained stationarity only after the first seasonal difference. Decomposition of each time series and MannKendall and Sen’s slope estimators, found a significant decreasing trend in seasonal surface lake elevation but no trend was found in rainfall. Seasonal Autoregressive Integrated Moving Average (SARIMA) time series analysis and diagnostic tests of stability and reliability found best fit models for rainfall (SARIMA[1,0,0] [2,1,1]12) and surface lake elevation (SARIMA [1,1,2] [1,0,0]12) used to forecast future values for each parameter. Multiple regression of variables obtained at each breach event showed that the proportion of variance (55.0%) and null deviance (72.1%) explained by the combination of rainfall, hightide, and wave height was the “best” model with the lowest Generalized Cross-Validation statistic of all other models evaluated. All models agreed that rainfall was the most significant factor within each set of predictor attributes used to model surface lake elevation. A declining trend in surface elevation in combination with variation in the historical area and extent of wetland plant communities may be attributable to systematic breaching of the lagoon annually.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51492/cfwj.108.20\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51492/cfwj.108.20","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Time series modeling of rainfall and lake elevation in relation to breaching events at the Lake Earl and Tolowa lagoon system, coastal northern California
I evaluated trends in spatial and temporal variability in historical levels of rainfall, water elevation, and breach events for lakes Earl, Tolowa, and their combined lagoon system along the coast of northern California. I examined the efficacy of time series analyses to model and forecast rainfall and lake elevation at a regional scale from 2008 to 2021. I employed semi-parametric Generalized Additive Model regression to investigate the historical relationship between anthropogenic breaching of the lagoon and simultaneous occurrences of environmental parameters to better understand conditions surrounding each breach event. Evaluation of the central tendency of rainfall and surface lake elevation showed high fluctuations in their mean, positive skewed, and leptokurtic curves. Augmented Dickey-Fuller tests found that seasonal rainfall was stationary, but surface lake elevation attained stationarity only after the first seasonal difference. Decomposition of each time series and MannKendall and Sen’s slope estimators, found a significant decreasing trend in seasonal surface lake elevation but no trend was found in rainfall. Seasonal Autoregressive Integrated Moving Average (SARIMA) time series analysis and diagnostic tests of stability and reliability found best fit models for rainfall (SARIMA[1,0,0] [2,1,1]12) and surface lake elevation (SARIMA [1,1,2] [1,0,0]12) used to forecast future values for each parameter. Multiple regression of variables obtained at each breach event showed that the proportion of variance (55.0%) and null deviance (72.1%) explained by the combination of rainfall, hightide, and wave height was the “best” model with the lowest Generalized Cross-Validation statistic of all other models evaluated. All models agreed that rainfall was the most significant factor within each set of predictor attributes used to model surface lake elevation. A declining trend in surface elevation in combination with variation in the historical area and extent of wetland plant communities may be attributable to systematic breaching of the lagoon annually.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.