{"title":"Calabi-Yau 4-fold Donaldson-Thomas不变量的虚环定域","authors":"Y. Kiem, Hyeonjun Park","doi":"10.1090/jag/816","DOIUrl":null,"url":null,"abstract":"<p>In 2020, Oh and Thomas constructed a virtual cycle <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-bracket upper X right-bracket Superscript normal v normal i normal r Baseline element-of upper A Subscript asterisk Baseline left-parenthesis upper X right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mi>X</mml:mi>\n <mml:msup>\n <mml:mo stretchy=\"false\">]</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">v</mml:mi>\n <mml:mi mathvariant=\"normal\">i</mml:mi>\n <mml:mi mathvariant=\"normal\">r</mml:mi>\n </mml:mrow>\n </mml:mrow>\n </mml:msup>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:msub>\n <mml:mi>A</mml:mi>\n <mml:mo>∗<!-- ∗ --></mml:mo>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>X</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">[X]^{\\mathrm {vir}} \\in A_*(X)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for a quasi-projective moduli space <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of stable sheaves or complexes over a Calabi-Yau 4-fold against which DT4 invariants may be defined as integrals of cohomology classes. In this paper, we prove that the virtual cycle localizes to the zero locus <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X left-parenthesis sigma right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>X</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>σ<!-- σ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">X(\\sigma )</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of an isotropic cosection <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma\">\n <mml:semantics>\n <mml:mi>σ<!-- σ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\sigma</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of the obstruction sheaf <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O b Subscript upper X\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>O</mml:mi>\n <mml:msub>\n <mml:mi>b</mml:mi>\n <mml:mi>X</mml:mi>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">Ob_X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and construct a localized virtual cycle <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-bracket upper X right-bracket Subscript normal l normal o normal c Superscript normal v normal i normal r Baseline element-of upper A Subscript asterisk Baseline left-parenthesis upper X left-parenthesis sigma right-parenthesis right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mi>X</mml:mi>\n <mml:msubsup>\n <mml:mo stretchy=\"false\">]</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">l</mml:mi>\n <mml:mi mathvariant=\"normal\">o</mml:mi>\n <mml:mi mathvariant=\"normal\">c</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">v</mml:mi>\n <mml:mi mathvariant=\"normal\">i</mml:mi>\n <mml:mi mathvariant=\"normal\">r</mml:mi>\n </mml:mrow>\n </mml:mrow>\n </mml:msubsup>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:msub>\n <mml:mi>A</mml:mi>\n <mml:mo>∗<!-- ∗ --></mml:mo>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>X</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>σ<!-- σ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">[X]^{\\mathrm {vir}} _\\mathrm {loc}\\in A_*(X(\\sigma ))</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. This is achieved by further localizing the Oh-Thomas class which localizes Edidin-Graham’s square root Euler class of a special orthogonal bundle. When the cosection <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"sigma\">\n <mml:semantics>\n <mml:mi>σ<!-- σ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\sigma</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is surjective so that the virtual cycle vanishes, we construct a reduced virtual cycle <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-bracket upper X right-bracket Subscript normal r normal e normal d Superscript normal v normal i normal r\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">[</mml:mo>\n <mml:mi>X</mml:mi>\n <mml:msubsup>\n <mml:mo stretchy=\"false\">]</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">r</mml:mi>\n <mml:mi mathvariant=\"normal\">e</mml:mi>\n <mml:mi mathvariant=\"normal\">d</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">v</mml:mi>\n <mml:mi mathvariant=\"normal\">i</mml:mi>\n <mml:mi mathvariant=\"normal\">r</mml:mi>\n </mml:mrow>\n </mml:mrow>\n </mml:msubsup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">[X]^{\\mathrm {vir}} _{\\mathrm {red}}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. As an application, we prove DT4 vanishing results for hyperkähler 4-folds. All these results hold for virtual structure sheaves and K-theoretic DT4 invariants.</p>","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2020-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Localizing virtual cycles for Donaldson-Thomas invariants of Calabi-Yau 4-folds\",\"authors\":\"Y. Kiem, Hyeonjun Park\",\"doi\":\"10.1090/jag/816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In 2020, Oh and Thomas constructed a virtual cycle <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-bracket upper X right-bracket Superscript normal v normal i normal r Baseline element-of upper A Subscript asterisk Baseline left-parenthesis upper X right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">[</mml:mo>\\n <mml:mi>X</mml:mi>\\n <mml:msup>\\n <mml:mo stretchy=\\\"false\\\">]</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">v</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">i</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">r</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n </mml:msup>\\n <mml:mo>∈<!-- ∈ --></mml:mo>\\n <mml:msub>\\n <mml:mi>A</mml:mi>\\n <mml:mo>∗<!-- ∗ --></mml:mo>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>X</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">[X]^{\\\\mathrm {vir}} \\\\in A_*(X)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> for a quasi-projective moduli space <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper X\\\">\\n <mml:semantics>\\n <mml:mi>X</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">X</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> of stable sheaves or complexes over a Calabi-Yau 4-fold against which DT4 invariants may be defined as integrals of cohomology classes. In this paper, we prove that the virtual cycle localizes to the zero locus <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper X left-parenthesis sigma right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>X</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>σ<!-- σ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">X(\\\\sigma )</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> of an isotropic cosection <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"sigma\\\">\\n <mml:semantics>\\n <mml:mi>σ<!-- σ --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\sigma</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> of the obstruction sheaf <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper O b Subscript upper X\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>O</mml:mi>\\n <mml:msub>\\n <mml:mi>b</mml:mi>\\n <mml:mi>X</mml:mi>\\n </mml:msub>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">Ob_X</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper X\\\">\\n <mml:semantics>\\n <mml:mi>X</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">X</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and construct a localized virtual cycle <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-bracket upper X right-bracket Subscript normal l normal o normal c Superscript normal v normal i normal r Baseline element-of upper A Subscript asterisk Baseline left-parenthesis upper X left-parenthesis sigma right-parenthesis right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">[</mml:mo>\\n <mml:mi>X</mml:mi>\\n <mml:msubsup>\\n <mml:mo stretchy=\\\"false\\\">]</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">l</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">o</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">c</mml:mi>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">v</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">i</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">r</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n </mml:msubsup>\\n <mml:mo>∈<!-- ∈ --></mml:mo>\\n <mml:msub>\\n <mml:mi>A</mml:mi>\\n <mml:mo>∗<!-- ∗ --></mml:mo>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>X</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>σ<!-- σ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">[X]^{\\\\mathrm {vir}} _\\\\mathrm {loc}\\\\in A_*(X(\\\\sigma ))</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. This is achieved by further localizing the Oh-Thomas class which localizes Edidin-Graham’s square root Euler class of a special orthogonal bundle. When the cosection <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"sigma\\\">\\n <mml:semantics>\\n <mml:mi>σ<!-- σ --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\sigma</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is surjective so that the virtual cycle vanishes, we construct a reduced virtual cycle <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-bracket upper X right-bracket Subscript normal r normal e normal d Superscript normal v normal i normal r\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo stretchy=\\\"false\\\">[</mml:mo>\\n <mml:mi>X</mml:mi>\\n <mml:msubsup>\\n <mml:mo stretchy=\\\"false\\\">]</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">r</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">e</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">d</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">v</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">i</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">r</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n </mml:msubsup>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">[X]^{\\\\mathrm {vir}} _{\\\\mathrm {red}}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. As an application, we prove DT4 vanishing results for hyperkähler 4-folds. All these results hold for virtual structure sheaves and K-theoretic DT4 invariants.</p>\",\"PeriodicalId\":54887,\"journal\":{\"name\":\"Journal of Algebraic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/jag/816\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jag/816","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4
摘要
在2020年,Oh和Thomas构造了一个虚环[X] vir∈a∗(X) [X]^{\ maththrm {vir}} \ In A_*(X),在Calabi-Yau 4-fold上稳定束或复的拟射影模空间X X上,DT4不变量可以定义为上同调类的积分。在本文中,证明了虚环定域于阻塞束Ob X Ob_X (X X)的各向同性共截面σ \sigma的零点轨迹X(σ) X(\sigma),构造了一个定域虚环[X] l O c vir∈a∗(X(σ)) [X]^{\mathrm {vir}} _\mathrm {loc}\in A_*(X(\sigma))。这是通过进一步定位Oh-Thomas类来实现的,它定位了一个特殊正交束的Edidin-Graham的平方根欧拉类。当余弦σ \ σ是满射使得虚环消失时,构造了一个约简虚环[X] red vir [X]^{\ mathm {vir}} _{\ mathm {red}}。作为应用,我们证明了hyperkähler 4-fold的DT4消失结果。所有这些结果都适用于虚结构轴和k理论DT4不变量。
Localizing virtual cycles for Donaldson-Thomas invariants of Calabi-Yau 4-folds
In 2020, Oh and Thomas constructed a virtual cycle [X]vir∈A∗(X)[X]^{\mathrm {vir}} \in A_*(X) for a quasi-projective moduli space XX of stable sheaves or complexes over a Calabi-Yau 4-fold against which DT4 invariants may be defined as integrals of cohomology classes. In this paper, we prove that the virtual cycle localizes to the zero locus X(σ)X(\sigma ) of an isotropic cosection σ\sigma of the obstruction sheaf ObXOb_X of XX and construct a localized virtual cycle [X]locvir∈A∗(X(σ))[X]^{\mathrm {vir}} _\mathrm {loc}\in A_*(X(\sigma )). This is achieved by further localizing the Oh-Thomas class which localizes Edidin-Graham’s square root Euler class of a special orthogonal bundle. When the cosection σ\sigma is surjective so that the virtual cycle vanishes, we construct a reduced virtual cycle [X]redvir[X]^{\mathrm {vir}} _{\mathrm {red}}. As an application, we prove DT4 vanishing results for hyperkähler 4-folds. All these results hold for virtual structure sheaves and K-theoretic DT4 invariants.
期刊介绍:
The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology.
This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.