一类时滞微分多项式的值分布

IF 1 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES
Nan Li, Lian-Zhong Yang
{"title":"一类时滞微分多项式的值分布","authors":"Nan Li, Lian-Zhong Yang","doi":"10.2306/scienceasia1513-1874.2023.010","DOIUrl":null,"url":null,"abstract":"Given an entire function $f$ of finite order $\\rho$, let $L(z,f)=\\sum_{j=0}^{m}b_{j}(z)f^{(k_{j})}(z+c_{j})$ be a linear delay-differential polynomial of $f$ with small coefficients in the sense of $O(r^{\\lambda+\\varepsilon})+S(r,f)$, $\\lambda<\\rho$. Provided $\\alpha$, $\\beta$ be similar small functions, we consider the zero distribution of $L(z,f)-\\alpha f^{n}-\\beta$ for $n\\geq 3$ and $n=2$, respectively. Our results are improvements and complements of Chen(Abstract Appl. Anal., 2011, 2011: ID239853, 1--9), and Laine (J. Math. Anal. Appl. 2019, 469(2): 808--826.), etc.","PeriodicalId":21577,"journal":{"name":"Scienceasia","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On value distribution of certain delay-differential polynomials\",\"authors\":\"Nan Li, Lian-Zhong Yang\",\"doi\":\"10.2306/scienceasia1513-1874.2023.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given an entire function $f$ of finite order $\\\\rho$, let $L(z,f)=\\\\sum_{j=0}^{m}b_{j}(z)f^{(k_{j})}(z+c_{j})$ be a linear delay-differential polynomial of $f$ with small coefficients in the sense of $O(r^{\\\\lambda+\\\\varepsilon})+S(r,f)$, $\\\\lambda<\\\\rho$. Provided $\\\\alpha$, $\\\\beta$ be similar small functions, we consider the zero distribution of $L(z,f)-\\\\alpha f^{n}-\\\\beta$ for $n\\\\geq 3$ and $n=2$, respectively. Our results are improvements and complements of Chen(Abstract Appl. Anal., 2011, 2011: ID239853, 1--9), and Laine (J. Math. Anal. Appl. 2019, 469(2): 808--826.), etc.\",\"PeriodicalId\":21577,\"journal\":{\"name\":\"Scienceasia\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scienceasia\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.2306/scienceasia1513-1874.2023.010\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scienceasia","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.2306/scienceasia1513-1874.2023.010","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

给定一个有限阶$\rho$的完整函数$f$,设$L(z,f)=\sum_{j=0}^{m}b_{j}(z)f^{(k_{j})}(z+c_{j})$是$f$的线性延迟微分多项式,具有$O(r^{\lambda+\varepsilon})+S(r,f)$, $\lambda<\rho$意义上的小系数。假设$\alpha$和$\beta$是类似的小函数,我们分别考虑$L(z,f)-\alpha f^{n}-\beta$对$n\geq 3$和$n=2$的零分布。我们的研究结果是对Chen(Abstract,应用)的改进和补充。分析的[j] .数学学报,2011,2011:ID239853, 1—9]。分析的应用科学学报,2019,469(2):808—826。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On value distribution of certain delay-differential polynomials
Given an entire function $f$ of finite order $\rho$, let $L(z,f)=\sum_{j=0}^{m}b_{j}(z)f^{(k_{j})}(z+c_{j})$ be a linear delay-differential polynomial of $f$ with small coefficients in the sense of $O(r^{\lambda+\varepsilon})+S(r,f)$, $\lambda<\rho$. Provided $\alpha$, $\beta$ be similar small functions, we consider the zero distribution of $L(z,f)-\alpha f^{n}-\beta$ for $n\geq 3$ and $n=2$, respectively. Our results are improvements and complements of Chen(Abstract Appl. Anal., 2011, 2011: ID239853, 1--9), and Laine (J. Math. Anal. Appl. 2019, 469(2): 808--826.), etc.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scienceasia
Scienceasia MULTIDISCIPLINARY SCIENCES-
CiteScore
1.70
自引率
33.30%
发文量
102
审稿时长
1 months
期刊介绍: ScienceAsia is a multidisciplinary journal publishing papers of high quality bimonthly, in printed and electronic versions, by the Science Society of Thailand under Royal Patronage and the National Research Council of Thailand. The journal publishes original research papers that provide novel findings and important contribution to broad area in science and mathematics. Areas covered include Biological Sciences and Biotechnology, Chemistry and Material Sciences, Environmental and Applied Sciences, and Mathematics and Physical Sciences. Manuscripts may report scientifically useful data, observations or model predictions, and/or provide a new scientific concept or a new explanation of published results. Submissions of materials of current scientific interest are highly welcome, provided that there is sufficient scientific merit. The journal will not accept manuscripts which have been published or are being considered for publication elsewhere, nor should manuscripts being considered by ScienceAsia be submitted to other journals. Submitted manuscripts must conform to the guidelines given in the Instructions for Authors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信