{"title":"带状浮石记录的岩浆在爆炸性喷发前的几分钟到几小时内混合和上升","authors":"H. Shamloo, A. Grunder","doi":"10.1130/g51318.1","DOIUrl":null,"url":null,"abstract":"High-threat explosive silicic eruptions commonly contain banded pumice, reflecting magma mingling in the conduit prior to or during eruption. Heterogeneities in tuffs have been attributed to the draw-up of compositionally distinct magmas, in which low-viscosity magmas ascend more quickly than high-viscosity magmas. The Rattlesnake Tuff of the High Lava Plains in Oregon (northwestern United States) represents a zoned magma reservoir where at least five different rhyolite compositions are preserved in banded pumice samples in variable mingled combinations. Geochemical gradients recorded across band boundaries in pumice were modeled using a Monte Carlo least-square minimization procedure to find the complementary error function that best fit observed Si and Ba diffusion profiles by iteratively varying the concentration of each plateau (i.e., the concentration on either side of the band boundary), the center and spacing of the diffusion profile, diffusion length scale, and temperature. Modeling indicates maximum time scales between mingling and conduit ascent from minutes to hours. Viscosity calculations for each rhyolite composition confirm that highly viscous rhyolites have longer ascent times than low-viscosity magmas, strongly supporting a model of sequential tapping of a zoned chamber controlled by viscosity.","PeriodicalId":12642,"journal":{"name":"Geology","volume":" ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magma mingling and ascent in the minutes to hours before an explosive eruption as recorded by banded pumice\",\"authors\":\"H. Shamloo, A. Grunder\",\"doi\":\"10.1130/g51318.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-threat explosive silicic eruptions commonly contain banded pumice, reflecting magma mingling in the conduit prior to or during eruption. Heterogeneities in tuffs have been attributed to the draw-up of compositionally distinct magmas, in which low-viscosity magmas ascend more quickly than high-viscosity magmas. The Rattlesnake Tuff of the High Lava Plains in Oregon (northwestern United States) represents a zoned magma reservoir where at least five different rhyolite compositions are preserved in banded pumice samples in variable mingled combinations. Geochemical gradients recorded across band boundaries in pumice were modeled using a Monte Carlo least-square minimization procedure to find the complementary error function that best fit observed Si and Ba diffusion profiles by iteratively varying the concentration of each plateau (i.e., the concentration on either side of the band boundary), the center and spacing of the diffusion profile, diffusion length scale, and temperature. Modeling indicates maximum time scales between mingling and conduit ascent from minutes to hours. Viscosity calculations for each rhyolite composition confirm that highly viscous rhyolites have longer ascent times than low-viscosity magmas, strongly supporting a model of sequential tapping of a zoned chamber controlled by viscosity.\",\"PeriodicalId\":12642,\"journal\":{\"name\":\"Geology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1130/g51318.1\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1130/g51318.1","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
Magma mingling and ascent in the minutes to hours before an explosive eruption as recorded by banded pumice
High-threat explosive silicic eruptions commonly contain banded pumice, reflecting magma mingling in the conduit prior to or during eruption. Heterogeneities in tuffs have been attributed to the draw-up of compositionally distinct magmas, in which low-viscosity magmas ascend more quickly than high-viscosity magmas. The Rattlesnake Tuff of the High Lava Plains in Oregon (northwestern United States) represents a zoned magma reservoir where at least five different rhyolite compositions are preserved in banded pumice samples in variable mingled combinations. Geochemical gradients recorded across band boundaries in pumice were modeled using a Monte Carlo least-square minimization procedure to find the complementary error function that best fit observed Si and Ba diffusion profiles by iteratively varying the concentration of each plateau (i.e., the concentration on either side of the band boundary), the center and spacing of the diffusion profile, diffusion length scale, and temperature. Modeling indicates maximum time scales between mingling and conduit ascent from minutes to hours. Viscosity calculations for each rhyolite composition confirm that highly viscous rhyolites have longer ascent times than low-viscosity magmas, strongly supporting a model of sequential tapping of a zoned chamber controlled by viscosity.
期刊介绍:
Published since 1973, Geology features rapid publication of about 23 refereed short (four-page) papers each month. Articles cover all earth-science disciplines and include new investigations and provocative topics. Professional geologists and university-level students in the earth sciences use this widely read journal to keep up with scientific research trends. The online forum section facilitates author-reader dialog. Includes color and occasional large-format illustrations on oversized loose inserts.