Tahir Mushtaq, Ahmad Kamran, Muhammad Zubair, Akbar Qureshi
{"title":"声道三维数字波导建模的对称方法","authors":"Tahir Mushtaq, Ahmad Kamran, Muhammad Zubair, Akbar Qureshi","doi":"10.24425/aoa.2023.146641","DOIUrl":null,"url":null,"abstract":"Simulation of wave propagation in the three-dimensional (3D) modeling of the vocal tract has shown significant promise for enhancing the accuracy of speech production. Recent 3D waveguide models of the vocal tract have been designed for better accuracy but require a lot of computational tasks. A high computational cost in these models leads to novel work in reducing the computational cost while retaining accuracy and performance. In the current work, we divide the geometry of the vocal tract into four equal symmetric parts with the introduction of two axial perpendicular planes, and the simulation is performed on only one part. A novel strategy is defined to implement symmetric conditions in the mesh. The complete standard 3D digital waveguide model is assumed as a benchmark model. The proposed model is compared with the benchmark model in terms of formant frequencies and efficiency. For the demonstration, the vowels / O /, /i/, / E /, / A /, and /u/ have been selected for the simulations. According to the results, the benchmark and current models are nearly identical in terms of frequency profiles and formant frequencies. Still the current model is three times more effective than the benchmark model.","PeriodicalId":8149,"journal":{"name":"Archives of Acoustics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Symmetric Approach in the Three-Dimensional Digital Waveguide Modeling of the Vocal Tract\",\"authors\":\"Tahir Mushtaq, Ahmad Kamran, Muhammad Zubair, Akbar Qureshi\",\"doi\":\"10.24425/aoa.2023.146641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simulation of wave propagation in the three-dimensional (3D) modeling of the vocal tract has shown significant promise for enhancing the accuracy of speech production. Recent 3D waveguide models of the vocal tract have been designed for better accuracy but require a lot of computational tasks. A high computational cost in these models leads to novel work in reducing the computational cost while retaining accuracy and performance. In the current work, we divide the geometry of the vocal tract into four equal symmetric parts with the introduction of two axial perpendicular planes, and the simulation is performed on only one part. A novel strategy is defined to implement symmetric conditions in the mesh. The complete standard 3D digital waveguide model is assumed as a benchmark model. The proposed model is compared with the benchmark model in terms of formant frequencies and efficiency. For the demonstration, the vowels / O /, /i/, / E /, / A /, and /u/ have been selected for the simulations. According to the results, the benchmark and current models are nearly identical in terms of frequency profiles and formant frequencies. Still the current model is three times more effective than the benchmark model.\",\"PeriodicalId\":8149,\"journal\":{\"name\":\"Archives of Acoustics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Acoustics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.24425/aoa.2023.146641\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Acoustics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.24425/aoa.2023.146641","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
A Symmetric Approach in the Three-Dimensional Digital Waveguide Modeling of the Vocal Tract
Simulation of wave propagation in the three-dimensional (3D) modeling of the vocal tract has shown significant promise for enhancing the accuracy of speech production. Recent 3D waveguide models of the vocal tract have been designed for better accuracy but require a lot of computational tasks. A high computational cost in these models leads to novel work in reducing the computational cost while retaining accuracy and performance. In the current work, we divide the geometry of the vocal tract into four equal symmetric parts with the introduction of two axial perpendicular planes, and the simulation is performed on only one part. A novel strategy is defined to implement symmetric conditions in the mesh. The complete standard 3D digital waveguide model is assumed as a benchmark model. The proposed model is compared with the benchmark model in terms of formant frequencies and efficiency. For the demonstration, the vowels / O /, /i/, / E /, / A /, and /u/ have been selected for the simulations. According to the results, the benchmark and current models are nearly identical in terms of frequency profiles and formant frequencies. Still the current model is three times more effective than the benchmark model.
期刊介绍:
Archives of Acoustics, the peer-reviewed quarterly journal publishes original research papers from all areas of acoustics like:
acoustical measurements and instrumentation,
acoustics of musics,
acousto-optics,
architectural, building and environmental acoustics,
bioacoustics,
electroacoustics,
linear and nonlinear acoustics,
noise and vibration,
physical and chemical effects of sound,
physiological acoustics,
psychoacoustics,
quantum acoustics,
speech processing and communication systems,
speech production and perception,
transducers,
ultrasonics,
underwater acoustics.