β-变换远集的获胜性质

Pub Date : 2020-11-29 DOI:10.1080/14689367.2020.1844154
Qianqian Yang, Shuailing Wang
{"title":"β-变换远集的获胜性质","authors":"Qianqian Yang, Shuailing Wang","doi":"10.1080/14689367.2020.1844154","DOIUrl":null,"url":null,"abstract":"For any , let be the β-transformation dynamical system. For any , define the distal set of a given point y as Yang, Li, et al. [15] proved that the Hausdorff dimension of the distal set of any point is one for any β>1. In this paper, we study the winning property of the distal set of a given point y. We prove that the distal set of a given point y is α-winning for any and , where is a constant. By the definition of winning set, it's obvious that the distal set of a given point y is a dense set.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/14689367.2020.1844154","citationCount":"0","resultStr":"{\"title\":\"Winning property of distal set for β-transformations\",\"authors\":\"Qianqian Yang, Shuailing Wang\",\"doi\":\"10.1080/14689367.2020.1844154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For any , let be the β-transformation dynamical system. For any , define the distal set of a given point y as Yang, Li, et al. [15] proved that the Hausdorff dimension of the distal set of any point is one for any β>1. In this paper, we study the winning property of the distal set of a given point y. We prove that the distal set of a given point y is α-winning for any and , where is a constant. By the definition of winning set, it's obvious that the distal set of a given point y is a dense set.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/14689367.2020.1844154\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/14689367.2020.1844154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/14689367.2020.1844154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于任意,设为β-变换动力系统。对于任意,定义给定点y的远端集为Yang, Li, et al.[15]证明了任意点的远端集的Hausdorff维数对于任意β>1为1。本文研究了给定点y的远端集合的致胜性质,证明了给定点y的远端集合对任意和都是α-致胜的,其中为常数。根据获胜集的定义,可以明显地看出,给定点y的远端集是一个稠密集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Winning property of distal set for β-transformations
For any , let be the β-transformation dynamical system. For any , define the distal set of a given point y as Yang, Li, et al. [15] proved that the Hausdorff dimension of the distal set of any point is one for any β>1. In this paper, we study the winning property of the distal set of a given point y. We prove that the distal set of a given point y is α-winning for any and , where is a constant. By the definition of winning set, it's obvious that the distal set of a given point y is a dense set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信