{"title":"具有高耦合效率、指向性和极化消光比的超紧凑、超宽带等离子体-光子混合垂直耦合器","authors":"Hamed Pezeshki, Amanda J. Wright, Eric C. Larkins","doi":"10.1049/ote2.12063","DOIUrl":null,"url":null,"abstract":"<p>An ultra-compact, ultra-broadband vertical coupler for dense photonic integrated circuits is reported with a 1.07 × 0.62 μm<sup>2</sup> wavelength-scale footprint. This hybrid plasmonic-photonic coupler uses a unique two-plane plasmonic nanoantenna array on a silicon-on-insulator waveguide. The in- and out-of-plane interference of the multipole moments and dual-feed nanoantennas results in efficient, unidirectional coupling. Finite-element simulations show that, for a 0.8 μm diameter Gaussian beam, the maximum coupling efficiency (CE) is −3.4 dB across the telecommunication C-, L- and U-bands with a 3-dB bandwidth of 230 nm. The CE is > 9 dB higher than recently reported ultra-compact plasmonic couplers. The maximum directivity and polarisation extinction ratio across the C- to U-bands are 9.2 and 24.1 dB, respectively. Finally, as an out-coupler, it has a vertical directivity of >8.5 dB, enabling its use for vertical optical interconnects between two vertically separated circuits.</p>","PeriodicalId":13408,"journal":{"name":"Iet Optoelectronics","volume":"16 3","pages":"124-132"},"PeriodicalIF":2.3000,"publicationDate":"2022-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/ote2.12063","citationCount":"6","resultStr":"{\"title\":\"Ultra-compact and ultra-broadband hybrid plasmonic-photonic vertical coupler with high coupling efficiency, directivity, and polarisation extinction ratio\",\"authors\":\"Hamed Pezeshki, Amanda J. Wright, Eric C. Larkins\",\"doi\":\"10.1049/ote2.12063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An ultra-compact, ultra-broadband vertical coupler for dense photonic integrated circuits is reported with a 1.07 × 0.62 μm<sup>2</sup> wavelength-scale footprint. This hybrid plasmonic-photonic coupler uses a unique two-plane plasmonic nanoantenna array on a silicon-on-insulator waveguide. The in- and out-of-plane interference of the multipole moments and dual-feed nanoantennas results in efficient, unidirectional coupling. Finite-element simulations show that, for a 0.8 μm diameter Gaussian beam, the maximum coupling efficiency (CE) is −3.4 dB across the telecommunication C-, L- and U-bands with a 3-dB bandwidth of 230 nm. The CE is > 9 dB higher than recently reported ultra-compact plasmonic couplers. The maximum directivity and polarisation extinction ratio across the C- to U-bands are 9.2 and 24.1 dB, respectively. Finally, as an out-coupler, it has a vertical directivity of >8.5 dB, enabling its use for vertical optical interconnects between two vertically separated circuits.</p>\",\"PeriodicalId\":13408,\"journal\":{\"name\":\"Iet Optoelectronics\",\"volume\":\"16 3\",\"pages\":\"124-132\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/ote2.12063\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Optoelectronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/ote2.12063\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Optoelectronics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ote2.12063","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Ultra-compact and ultra-broadband hybrid plasmonic-photonic vertical coupler with high coupling efficiency, directivity, and polarisation extinction ratio
An ultra-compact, ultra-broadband vertical coupler for dense photonic integrated circuits is reported with a 1.07 × 0.62 μm2 wavelength-scale footprint. This hybrid plasmonic-photonic coupler uses a unique two-plane plasmonic nanoantenna array on a silicon-on-insulator waveguide. The in- and out-of-plane interference of the multipole moments and dual-feed nanoantennas results in efficient, unidirectional coupling. Finite-element simulations show that, for a 0.8 μm diameter Gaussian beam, the maximum coupling efficiency (CE) is −3.4 dB across the telecommunication C-, L- and U-bands with a 3-dB bandwidth of 230 nm. The CE is > 9 dB higher than recently reported ultra-compact plasmonic couplers. The maximum directivity and polarisation extinction ratio across the C- to U-bands are 9.2 and 24.1 dB, respectively. Finally, as an out-coupler, it has a vertical directivity of >8.5 dB, enabling its use for vertical optical interconnects between two vertically separated circuits.
期刊介绍:
IET Optoelectronics publishes state of the art research papers in the field of optoelectronics and photonics. The topics that are covered by the journal include optical and optoelectronic materials, nanophotonics, metamaterials and photonic crystals, light sources (e.g. LEDs, lasers and devices for lighting), optical modulation and multiplexing, optical fibres, cables and connectors, optical amplifiers, photodetectors and optical receivers, photonic integrated circuits, photonic systems, optical signal processing and holography and displays.
Most of the papers published describe original research from universities and industrial and government laboratories. However correspondence suggesting review papers and tutorials is welcomed, as are suggestions for special issues.
IET Optoelectronics covers but is not limited to the following topics:
Optical and optoelectronic materials
Light sources, including LEDs, lasers and devices for lighting
Optical modulation and multiplexing
Optical fibres, cables and connectors
Optical amplifiers
Photodetectors and optical receivers
Photonic integrated circuits
Nanophotonics and photonic crystals
Optical signal processing
Holography
Displays