{"title":"轴压作用下带纵裂纹和点蚀钢板的残余极限强度:非线性有限元法研究","authors":"Farzaneh Ahmadi, A. R. Ranji","doi":"10.5957/JSPD.10190055","DOIUrl":null,"url":null,"abstract":"The main aim of present study was to determine the ultimate strength of cracked and corroded plates under uniform in-plane compression. Corrosion is considered as pitting-type corrosion at one side of the plate with a central longitudinal crack. Nonlinear finite element analysis using commercial computer code, ANSYS, is used to determine the ultimate strength of deteriorated plates. Different geometrical parameters, including the aspect ratio (AR) and thickness of the plate, number of pits, pit depth-to-thickness ratio, and crack length, are considered. It is found that the AR of plates have great influence on the ultimate strength of cracked-pitted plates. Because of the position and orientation of the crack, the length of central longitudinal crack has no influence on ultimate strength reduction of cracked and cracked-pitted plates. The results show that regardless of the number of pits and crack length, in thin plates where buckling controls failure modes at ultimate strength, the number of pits has less influence on reduction of the ultimate strength than thick plates where yielding controls failure mode. Also it is concluded that in rectangular plates, arrangements of pits has more effect on reduction of the ultimate strength of cracked-pitted plates than the number of pits.","PeriodicalId":48791,"journal":{"name":"Journal of Ship Production and Design","volume":"1 1","pages":"1-12"},"PeriodicalIF":0.5000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Residual Ultimate Strength of Steel Plates with Longitudinal Crack and Pitting Corrosion under Axial compression: Nonlinear Finite Element Method Investigations\",\"authors\":\"Farzaneh Ahmadi, A. R. Ranji\",\"doi\":\"10.5957/JSPD.10190055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main aim of present study was to determine the ultimate strength of cracked and corroded plates under uniform in-plane compression. Corrosion is considered as pitting-type corrosion at one side of the plate with a central longitudinal crack. Nonlinear finite element analysis using commercial computer code, ANSYS, is used to determine the ultimate strength of deteriorated plates. Different geometrical parameters, including the aspect ratio (AR) and thickness of the plate, number of pits, pit depth-to-thickness ratio, and crack length, are considered. It is found that the AR of plates have great influence on the ultimate strength of cracked-pitted plates. Because of the position and orientation of the crack, the length of central longitudinal crack has no influence on ultimate strength reduction of cracked and cracked-pitted plates. The results show that regardless of the number of pits and crack length, in thin plates where buckling controls failure modes at ultimate strength, the number of pits has less influence on reduction of the ultimate strength than thick plates where yielding controls failure mode. Also it is concluded that in rectangular plates, arrangements of pits has more effect on reduction of the ultimate strength of cracked-pitted plates than the number of pits.\",\"PeriodicalId\":48791,\"journal\":{\"name\":\"Journal of Ship Production and Design\",\"volume\":\"1 1\",\"pages\":\"1-12\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ship Production and Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5957/JSPD.10190055\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ship Production and Design","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5957/JSPD.10190055","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
Residual Ultimate Strength of Steel Plates with Longitudinal Crack and Pitting Corrosion under Axial compression: Nonlinear Finite Element Method Investigations
The main aim of present study was to determine the ultimate strength of cracked and corroded plates under uniform in-plane compression. Corrosion is considered as pitting-type corrosion at one side of the plate with a central longitudinal crack. Nonlinear finite element analysis using commercial computer code, ANSYS, is used to determine the ultimate strength of deteriorated plates. Different geometrical parameters, including the aspect ratio (AR) and thickness of the plate, number of pits, pit depth-to-thickness ratio, and crack length, are considered. It is found that the AR of plates have great influence on the ultimate strength of cracked-pitted plates. Because of the position and orientation of the crack, the length of central longitudinal crack has no influence on ultimate strength reduction of cracked and cracked-pitted plates. The results show that regardless of the number of pits and crack length, in thin plates where buckling controls failure modes at ultimate strength, the number of pits has less influence on reduction of the ultimate strength than thick plates where yielding controls failure mode. Also it is concluded that in rectangular plates, arrangements of pits has more effect on reduction of the ultimate strength of cracked-pitted plates than the number of pits.
期刊介绍:
Original and timely technical papers addressing problems of shipyard techniques and production of merchant and naval ships appear in this quarterly publication. Since its inception, the Journal of Ship Production and Design (formerly the Journal of Ship Production) has been a forum for peer-reviewed, professionally edited papers from academic and industry sources. As such it has influenced the worldwide development of ship production engineering as a fully qualified professional discipline. The expanded scope seeks papers in additional areas, specifically ship design, including design for production, plus other marine technology topics, such as ship operations, shipping economics, and safety. Each issue contains a well-rounded selection of technical papers relevant to marine professionals.