阿克图兹高压杂岩(Chu-Kendyktas地体)前寒武纪大陆地壳演化的最新寒武纪阶段北天山):来自中亚造山带西南部分的新证据

IF 2.1 3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Anfisa V. Skoblenko (Pilitsyna) , Nadezhda A. Kanygina , Andrey A. Tretyakov , Kirill E. Degtyarev , Truong Tai Nguyen , Kwan-Nang Pang , Victor S. Sheshukov , Kseniya G. Erofeeva
{"title":"阿克图兹高压杂岩(Chu-Kendyktas地体)前寒武纪大陆地壳演化的最新寒武纪阶段北天山):来自中亚造山带西南部分的新证据","authors":"Anfisa V. Skoblenko (Pilitsyna) ,&nbsp;Nadezhda A. Kanygina ,&nbsp;Andrey A. Tretyakov ,&nbsp;Kirill E. Degtyarev ,&nbsp;Truong Tai Nguyen ,&nbsp;Kwan-Nang Pang ,&nbsp;Victor S. Sheshukov ,&nbsp;Kseniya G. Erofeeva","doi":"10.1016/j.jog.2022.101955","DOIUrl":null,"url":null,"abstract":"<div><p>Metamorphic crustal formations of the Aktyuz block (SE part of the Chu-Kendyktas terrane; SW segment of the Central Asian Orogenic Belt) include garnet-bearing orthogneisses and gneissic granites of the Aktyuz Complex, garnet-bearing ortho- and paragneisses of the Kemin Complex and paragneisses with schists of the Kokdzhon Complex. The gneisses of the Aktyuz and Kemin Complexes associated with intensively altered eclogites, are referred to the retrogressed felsic granulites, which likely experienced high-pressure re-equilibration and dehydration melting under eclogite facies conditions. The eclogite-bearing garnet-mica gneisses of the Aktyuz Complex contain zircons with magmatic cores, overgrown by the rims with the low Th/U ratios of 0.005–0.05. The obtained age clusters of ca. 844 Ma and ca. 490 Ma likely characterize two stages of the rocks’ evolution in the late Neoproterozoic (emplacement of the gneisses’ protoliths) and in the latest Cambrian (high-pressure metamorphism of the gneisses’ protoliths). The garnet-epidote gneissic granites of the Aktyuz Complex and garnet-bearing chloritized orthogneisses of the Kemin Complex yielded late Neoproterozoic (Tonian) protoliths’ crystallization ages of 820–805 Ma, but these rocks do not show any evidence of the later re-equilibration and apparently avoided high-pressure metamorphism. Thus, the protoliths of the late Neoproterozoic orthogneisses represented by anorogenic granitoids, comprised Precambrian basement of the Aktyuz block in the Chu-Kendyktas terrane, and some part of the felsic rocks was involved into Early Palaeozoic subduction processes. Detrital zircons from the metasedimentary formations of the Kokdzhon and Kemin Complexes of the Aktyuz block display the main age peaks at 600, 800, 1000 Ma and weaker peaks at ∼1.5 and 2.5 Ga. The protoliths of the rocks were terrigenous lithologies, which are believed to have been formed after eroded felsic complexes of mostly Ediacaran, late Neoproterozoic, Mesoproterozoic and Palaeoproterozoic-to-Neoarchean ages, and accumulated during the Cambrian. The rocks likely made up sedimentary cover of the Chu-Kendyktas terrane and constituted the sand-siltstone-shale series. The presence of varisized rims of 495–471 Ma in the detrital zircons of the metasedimentary formations of the Kokdzhon and Kemin Complexes is consistent with the near-peak-to-retrograde stages of the latest Cambrian-Middle Ordovician metamorphic evolution of the rocks. The age estimates obtained for the crustal complexes of the Aktyuz block correlate well with those of the similar complexes known from the adjacent Issyk-Kul (North Tien Shan) terrane (Makbal Complex) and Zheltau terrane (Southern Kazakhstan; Koyandy Complex) in the SW part of the Central Asian Orogenic Belt.</p></div>","PeriodicalId":54823,"journal":{"name":"Journal of Geodynamics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Latest Cambrian stage of evolution of Precambrian continental crust in the Aktyuz high-pressure Complex (Chu-Kendyktas terrane; North Tien Shan): New evidence from the SW part of the Central Asian Orogenic Belt\",\"authors\":\"Anfisa V. Skoblenko (Pilitsyna) ,&nbsp;Nadezhda A. Kanygina ,&nbsp;Andrey A. Tretyakov ,&nbsp;Kirill E. Degtyarev ,&nbsp;Truong Tai Nguyen ,&nbsp;Kwan-Nang Pang ,&nbsp;Victor S. Sheshukov ,&nbsp;Kseniya G. Erofeeva\",\"doi\":\"10.1016/j.jog.2022.101955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Metamorphic crustal formations of the Aktyuz block (SE part of the Chu-Kendyktas terrane; SW segment of the Central Asian Orogenic Belt) include garnet-bearing orthogneisses and gneissic granites of the Aktyuz Complex, garnet-bearing ortho- and paragneisses of the Kemin Complex and paragneisses with schists of the Kokdzhon Complex. The gneisses of the Aktyuz and Kemin Complexes associated with intensively altered eclogites, are referred to the retrogressed felsic granulites, which likely experienced high-pressure re-equilibration and dehydration melting under eclogite facies conditions. The eclogite-bearing garnet-mica gneisses of the Aktyuz Complex contain zircons with magmatic cores, overgrown by the rims with the low Th/U ratios of 0.005–0.05. The obtained age clusters of ca. 844 Ma and ca. 490 Ma likely characterize two stages of the rocks’ evolution in the late Neoproterozoic (emplacement of the gneisses’ protoliths) and in the latest Cambrian (high-pressure metamorphism of the gneisses’ protoliths). The garnet-epidote gneissic granites of the Aktyuz Complex and garnet-bearing chloritized orthogneisses of the Kemin Complex yielded late Neoproterozoic (Tonian) protoliths’ crystallization ages of 820–805 Ma, but these rocks do not show any evidence of the later re-equilibration and apparently avoided high-pressure metamorphism. Thus, the protoliths of the late Neoproterozoic orthogneisses represented by anorogenic granitoids, comprised Precambrian basement of the Aktyuz block in the Chu-Kendyktas terrane, and some part of the felsic rocks was involved into Early Palaeozoic subduction processes. Detrital zircons from the metasedimentary formations of the Kokdzhon and Kemin Complexes of the Aktyuz block display the main age peaks at 600, 800, 1000 Ma and weaker peaks at ∼1.5 and 2.5 Ga. The protoliths of the rocks were terrigenous lithologies, which are believed to have been formed after eroded felsic complexes of mostly Ediacaran, late Neoproterozoic, Mesoproterozoic and Palaeoproterozoic-to-Neoarchean ages, and accumulated during the Cambrian. The rocks likely made up sedimentary cover of the Chu-Kendyktas terrane and constituted the sand-siltstone-shale series. The presence of varisized rims of 495–471 Ma in the detrital zircons of the metasedimentary formations of the Kokdzhon and Kemin Complexes is consistent with the near-peak-to-retrograde stages of the latest Cambrian-Middle Ordovician metamorphic evolution of the rocks. The age estimates obtained for the crustal complexes of the Aktyuz block correlate well with those of the similar complexes known from the adjacent Issyk-Kul (North Tien Shan) terrane (Makbal Complex) and Zheltau terrane (Southern Kazakhstan; Koyandy Complex) in the SW part of the Central Asian Orogenic Belt.</p></div>\",\"PeriodicalId\":54823,\"journal\":{\"name\":\"Journal of Geodynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geodynamics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S026437072200059X\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodynamics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026437072200059X","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 1

摘要

Aktyuz地块(Chu Kendyktas地体的SE部分;中亚造山带的SW段)的变质地壳构造包括Aktyyuz杂岩的含石榴石正片麻岩和片麻质花岗岩、Kemin杂岩的含有石榴石的正片麻石和副片麻岩以及Kokdzon杂岩的带片岩的副片麻石。Aktyuz和Kemin杂岩的片麻岩与强烈蚀变的榴辉岩有关,是指退化的长英质麻粒岩,在榴辉岩相条件下可能经历高压再平衡和脱水熔融。Aktyuz杂岩的含榴辉岩的石榴石-云母片麻岩含有带有岩浆核心的锆石,边缘过度生长,Th/U比为0.005–0.05。获得的约844 Ma和约490 Ma的年龄群可能代表了新元古代晚期(片麻岩原岩侵位)和寒武纪晚期(片麻岩原岩高压变质作用)岩石演化的两个阶段。Aktyuz杂岩的石榴石-绿帘石-麻质花岗岩和Kemin杂岩的含石榴石绿泥石化正片麻岩产生了新元古代晚期(托尼安)原岩的结晶年龄为820–805 Ma,但这些岩石没有显示出任何后期再平衡的证据,显然避免了高压变质作用。因此,以非造山花岗岩类为代表的新元古代晚期正片麻岩的原岩构成了Chu Kendyktas地体中Aktyuz地块的前寒武纪基底,部分长英质岩石参与了早古生代俯冲过程。Aktyuz地块Kokdzon和Kemin杂岩变质沉积层的碎屑锆石显示出主要年龄峰值在600、800、1000 Ma,较弱峰值在~1.5和2.5 Ga。岩石的原岩为陆源岩性,据信是在主要为埃迪卡拉纪、新元古代晚期的长英质杂岩侵蚀后形成的,中元古代和古元古代到新太古代,并在寒武纪积累。这些岩石可能构成了Chu Kendyktas地体的沉积盖层,并构成了沙-粉砂岩-页岩系列。Kokdzon和Kemin杂岩变质沉积层的碎屑锆石中存在495–471 Ma的不同边缘,这与岩石最新寒武纪-中奥陶世变质演化的近峰值到倒退阶段一致。Aktyuz地块地壳杂岩的年龄估计值与中亚造山带西南部邻近的Isyk Kul(北天山)地体(Makbal杂岩)和Zheltau地体(哈萨克斯坦南部;Koyandy杂岩)中已知的类似杂岩的年代估计值很好地相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Latest Cambrian stage of evolution of Precambrian continental crust in the Aktyuz high-pressure Complex (Chu-Kendyktas terrane; North Tien Shan): New evidence from the SW part of the Central Asian Orogenic Belt

Latest Cambrian stage of evolution of Precambrian continental crust in the Aktyuz high-pressure Complex (Chu-Kendyktas terrane; North Tien Shan): New evidence from the SW part of the Central Asian Orogenic Belt

Metamorphic crustal formations of the Aktyuz block (SE part of the Chu-Kendyktas terrane; SW segment of the Central Asian Orogenic Belt) include garnet-bearing orthogneisses and gneissic granites of the Aktyuz Complex, garnet-bearing ortho- and paragneisses of the Kemin Complex and paragneisses with schists of the Kokdzhon Complex. The gneisses of the Aktyuz and Kemin Complexes associated with intensively altered eclogites, are referred to the retrogressed felsic granulites, which likely experienced high-pressure re-equilibration and dehydration melting under eclogite facies conditions. The eclogite-bearing garnet-mica gneisses of the Aktyuz Complex contain zircons with magmatic cores, overgrown by the rims with the low Th/U ratios of 0.005–0.05. The obtained age clusters of ca. 844 Ma and ca. 490 Ma likely characterize two stages of the rocks’ evolution in the late Neoproterozoic (emplacement of the gneisses’ protoliths) and in the latest Cambrian (high-pressure metamorphism of the gneisses’ protoliths). The garnet-epidote gneissic granites of the Aktyuz Complex and garnet-bearing chloritized orthogneisses of the Kemin Complex yielded late Neoproterozoic (Tonian) protoliths’ crystallization ages of 820–805 Ma, but these rocks do not show any evidence of the later re-equilibration and apparently avoided high-pressure metamorphism. Thus, the protoliths of the late Neoproterozoic orthogneisses represented by anorogenic granitoids, comprised Precambrian basement of the Aktyuz block in the Chu-Kendyktas terrane, and some part of the felsic rocks was involved into Early Palaeozoic subduction processes. Detrital zircons from the metasedimentary formations of the Kokdzhon and Kemin Complexes of the Aktyuz block display the main age peaks at 600, 800, 1000 Ma and weaker peaks at ∼1.5 and 2.5 Ga. The protoliths of the rocks were terrigenous lithologies, which are believed to have been formed after eroded felsic complexes of mostly Ediacaran, late Neoproterozoic, Mesoproterozoic and Palaeoproterozoic-to-Neoarchean ages, and accumulated during the Cambrian. The rocks likely made up sedimentary cover of the Chu-Kendyktas terrane and constituted the sand-siltstone-shale series. The presence of varisized rims of 495–471 Ma in the detrital zircons of the metasedimentary formations of the Kokdzhon and Kemin Complexes is consistent with the near-peak-to-retrograde stages of the latest Cambrian-Middle Ordovician metamorphic evolution of the rocks. The age estimates obtained for the crustal complexes of the Aktyuz block correlate well with those of the similar complexes known from the adjacent Issyk-Kul (North Tien Shan) terrane (Makbal Complex) and Zheltau terrane (Southern Kazakhstan; Koyandy Complex) in the SW part of the Central Asian Orogenic Belt.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geodynamics
Journal of Geodynamics 地学-地球化学与地球物理
CiteScore
4.60
自引率
0.00%
发文量
21
审稿时长
6-12 weeks
期刊介绍: The Journal of Geodynamics is an international and interdisciplinary forum for the publication of results and discussions of solid earth research in geodetic, geophysical, geological and geochemical geodynamics, with special emphasis on the large scale processes involved.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信