区域背景应力场对溪洛渡坝周边大断裂自发破裂的影响

IF 1.2 4区 地球科学 Q3 Earth and Planetary Sciences
Li Liao , Ping′en Li , Jiansi Yang , Jianzhou Feng
{"title":"区域背景应力场对溪洛渡坝周边大断裂自发破裂的影响","authors":"Li Liao ,&nbsp;Ping′en Li ,&nbsp;Jiansi Yang ,&nbsp;Jianzhou Feng","doi":"10.1016/j.eqs.2022.10.004","DOIUrl":null,"url":null,"abstract":"<div><p>Simulations of the spontaneous rupture of potential earthquakes in the vicinity of reservoir dams can provide accurate parameters for seismic resilience assessment, which is essential for improving the seismic performance of reservoir dams. In simulations of potential spontaneous ruptures, fault geometry, regional stress fields, constitutive parameters of the fault friction law, and many other factors control the slip rate, morphology, and dislocation of the rupture, thereby affecting the simulated ground motion parameters. The focus of this study was to elucidate the effects of the background stress field on the nucleation and propagation of spontaneous ruptures based on the factors influencing potential <em>M</em> &gt; 7 earthquake events on the Leibo Middle Fault (LBMF) and the Mabian-Yanjing Fault (MB-YJF) in the Xiluodu dam (XLD) region. Our simulation results show that the magnitude of the regional background stress field plays a decisive role in whether a destructive earthquake exceeding the critical magnitude will occur. We found that the direction and magnitude of the regional stress significantly affect the range of rupture propagation on the fault plane, and fault geometry affects the spatial distribution of the rupture range. Under the same regional stress field magnitude and orientation, a more destructive, high-magnitude earthquake is more likely to occur on the LBMF than on the MB-YJF.</p></div>","PeriodicalId":46333,"journal":{"name":"Earthquake Science","volume":"35 5","pages":"Pages 398-409"},"PeriodicalIF":1.2000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674451922003603/pdfft?md5=22a291ede8f6c3802b96671ff742592a&pid=1-s2.0-S1674451922003603-main.pdf","citationCount":"1","resultStr":"{\"title\":\"Influence of regional background stress fields on the spontaneous rupture of the major faults around Xiluodu dam, China\",\"authors\":\"Li Liao ,&nbsp;Ping′en Li ,&nbsp;Jiansi Yang ,&nbsp;Jianzhou Feng\",\"doi\":\"10.1016/j.eqs.2022.10.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Simulations of the spontaneous rupture of potential earthquakes in the vicinity of reservoir dams can provide accurate parameters for seismic resilience assessment, which is essential for improving the seismic performance of reservoir dams. In simulations of potential spontaneous ruptures, fault geometry, regional stress fields, constitutive parameters of the fault friction law, and many other factors control the slip rate, morphology, and dislocation of the rupture, thereby affecting the simulated ground motion parameters. The focus of this study was to elucidate the effects of the background stress field on the nucleation and propagation of spontaneous ruptures based on the factors influencing potential <em>M</em> &gt; 7 earthquake events on the Leibo Middle Fault (LBMF) and the Mabian-Yanjing Fault (MB-YJF) in the Xiluodu dam (XLD) region. Our simulation results show that the magnitude of the regional background stress field plays a decisive role in whether a destructive earthquake exceeding the critical magnitude will occur. We found that the direction and magnitude of the regional stress significantly affect the range of rupture propagation on the fault plane, and fault geometry affects the spatial distribution of the rupture range. Under the same regional stress field magnitude and orientation, a more destructive, high-magnitude earthquake is more likely to occur on the LBMF than on the MB-YJF.</p></div>\",\"PeriodicalId\":46333,\"journal\":{\"name\":\"Earthquake Science\",\"volume\":\"35 5\",\"pages\":\"Pages 398-409\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1674451922003603/pdfft?md5=22a291ede8f6c3802b96671ff742592a&pid=1-s2.0-S1674451922003603-main.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earthquake Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674451922003603\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674451922003603","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 1

摘要

水库坝附近潜在地震自发破裂的模拟可以为水库坝的地震恢复力评价提供准确的参数,对提高水库坝的抗震性能至关重要。在潜在自发破裂模拟中,断层几何形状、区域应力场、断层摩擦规律的本构参数等诸多因素控制着破裂的滑移率、形态和位错,从而影响模拟的地震动参数。本研究的重点是在潜在应力和应力影响因素的基础上,阐明背景应力场对自发破裂成核和扩展的影响;溪洛渡坝区雷波中断裂带和马边-燕京断裂带7次地震事件模拟结果表明,区域背景应力场的大小对是否发生超过临界震级的破坏性地震起着决定性的作用。研究发现,区域应力的方向和大小显著影响断面上破裂传播范围,断层几何形状影响破裂范围的空间分布。在相同的区域应力场震级和方向下,LBMF比MB-YJF更容易发生破坏性更强的高震级地震。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of regional background stress fields on the spontaneous rupture of the major faults around Xiluodu dam, China

Simulations of the spontaneous rupture of potential earthquakes in the vicinity of reservoir dams can provide accurate parameters for seismic resilience assessment, which is essential for improving the seismic performance of reservoir dams. In simulations of potential spontaneous ruptures, fault geometry, regional stress fields, constitutive parameters of the fault friction law, and many other factors control the slip rate, morphology, and dislocation of the rupture, thereby affecting the simulated ground motion parameters. The focus of this study was to elucidate the effects of the background stress field on the nucleation and propagation of spontaneous ruptures based on the factors influencing potential M > 7 earthquake events on the Leibo Middle Fault (LBMF) and the Mabian-Yanjing Fault (MB-YJF) in the Xiluodu dam (XLD) region. Our simulation results show that the magnitude of the regional background stress field plays a decisive role in whether a destructive earthquake exceeding the critical magnitude will occur. We found that the direction and magnitude of the regional stress significantly affect the range of rupture propagation on the fault plane, and fault geometry affects the spatial distribution of the rupture range. Under the same regional stress field magnitude and orientation, a more destructive, high-magnitude earthquake is more likely to occur on the LBMF than on the MB-YJF.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earthquake Science
Earthquake Science GEOCHEMISTRY & GEOPHYSICS-
CiteScore
1.10
自引率
8.30%
发文量
42
审稿时长
3 months
期刊介绍: Earthquake Science (EQS) aims to publish high-quality, original, peer-reviewed articles on earthquake-related research subjects. It is an English international journal sponsored by the Seismological Society of China and the Institute of Geophysics, China Earthquake Administration. The topics include, but not limited to, the following ● Seismic sources of all kinds. ● Earth structure at all scales. ● Seismotectonics. ● New methods and theoretical seismology. ● Strong ground motion. ● Seismic phenomena of all kinds. ● Seismic hazards, earthquake forecasting and prediction. ● Seismic instrumentation. ● Significant recent or past seismic events. ● Documentation of recent seismic events or important observations. ● Descriptions of field deployments, new methods, and available software tools. The types of manuscripts include the following. There is no length requirement, except for the Short Notes. 【Articles】 Original contributions that have not been published elsewhere. 【Short Notes】 Short papers of recent events or topics that warrant rapid peer reviews and publications. Limited to 4 publication pages. 【Rapid Communications】 Significant contributions that warrant rapid peer reviews and publications. 【Review Articles】Review articles are by invitation only. Please contact the editorial office and editors for possible proposals. 【Toolboxes】 Descriptions of novel numerical methods and associated computer codes. 【Data Products】 Documentation of datasets of various kinds that are interested to the community and available for open access (field data, processed data, synthetic data, or models). 【Opinions】Views on important topics and future directions in earthquake science. 【Comments and Replies】Commentaries on a recently published EQS paper is welcome. The authors of the paper commented will be invited to reply. Both the Comment and the Reply are subject to peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信