Angel Alexis Zevallos Apaza, Sofía Sair Onque Gárate, Arian Eduardo Javier Canaza Cuadros, Paulina Miriam Choqueneira Ccasa
{"title":"人工智能中基于决策树的水可饮用性预测模型","authors":"Angel Alexis Zevallos Apaza, Sofía Sair Onque Gárate, Arian Eduardo Javier Canaza Cuadros, Paulina Miriam Choqueneira Ccasa","doi":"10.48168/innosoft.s9.a72","DOIUrl":null,"url":null,"abstract":"En este trabajo se planteó como objetivo utilizar la técnica de árbol de decisión para definir un modelo capaz de predecir la potabilidad del agua. Para evaluar el rendimiento de la clasificación del árbol de decisión se utilizó un dataset extraído de Kaggle que cuenta con 3276 muestras de agua divididas por la variable de potabilidad. Aplicando las librerías Pandas y Scikit Learn se logró definir un modelo basado en un árbol de decisión evaluado con las métricas de precisión, exactitud, exhaustividad y puntuación F1 logrando 0.77, 0.80, 0.85 y 0.81 respectivamente.","PeriodicalId":52619,"journal":{"name":"Innovacion y Software","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelo predictivo de la potabilidad del agua mediante un árbol de decisión en Inteligencia Artificial\",\"authors\":\"Angel Alexis Zevallos Apaza, Sofía Sair Onque Gárate, Arian Eduardo Javier Canaza Cuadros, Paulina Miriam Choqueneira Ccasa\",\"doi\":\"10.48168/innosoft.s9.a72\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"En este trabajo se planteó como objetivo utilizar la técnica de árbol de decisión para definir un modelo capaz de predecir la potabilidad del agua. Para evaluar el rendimiento de la clasificación del árbol de decisión se utilizó un dataset extraído de Kaggle que cuenta con 3276 muestras de agua divididas por la variable de potabilidad. Aplicando las librerías Pandas y Scikit Learn se logró definir un modelo basado en un árbol de decisión evaluado con las métricas de precisión, exactitud, exhaustividad y puntuación F1 logrando 0.77, 0.80, 0.85 y 0.81 respectivamente.\",\"PeriodicalId\":52619,\"journal\":{\"name\":\"Innovacion y Software\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Innovacion y Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48168/innosoft.s9.a72\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innovacion y Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48168/innosoft.s9.a72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modelo predictivo de la potabilidad del agua mediante un árbol de decisión en Inteligencia Artificial
En este trabajo se planteó como objetivo utilizar la técnica de árbol de decisión para definir un modelo capaz de predecir la potabilidad del agua. Para evaluar el rendimiento de la clasificación del árbol de decisión se utilizó un dataset extraído de Kaggle que cuenta con 3276 muestras de agua divididas por la variable de potabilidad. Aplicando las librerías Pandas y Scikit Learn se logró definir un modelo basado en un árbol de decisión evaluado con las métricas de precisión, exactitud, exhaustividad y puntuación F1 logrando 0.77, 0.80, 0.85 y 0.81 respectivamente.