Feldman-Katok和均值度量中的受限灵敏度、返回时间和熵

Pub Date : 2022-03-20 DOI:10.1080/14689367.2022.2054311
Xiaoxiao Nie, Yu Huang
{"title":"Feldman-Katok和均值度量中的受限灵敏度、返回时间和熵","authors":"Xiaoxiao Nie, Yu Huang","doi":"10.1080/14689367.2022.2054311","DOIUrl":null,"url":null,"abstract":"In this paper, by replacing the Bowen metric with the Feldman–Katok (FK) metric and the mean metric, respectively, we introduce measure-theoretic restricted FK (mean) sensitivities and topological restricted FK (mean) sensitivities. For a topological dynamical system, we discuss the relationships among measure-theoretic asymptotic FK rate with respect to sensitivity, topological asymptotic FK rate with respect to sensitivity, Brin–Katok local entropy and topological entropy. Parallel results are obtained for the mean metric case. In addition, we characterize the measure-theoretic entropy in terms of the exponential growth rate of the n-th return time to dynamical balls with respect to FK or mean metric. We also construct conditional entropy formulae with respect to FK metrics and the mean metrics.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Restricted sensitivity, return time and entropy in Feldman–Katok and mean metrics\",\"authors\":\"Xiaoxiao Nie, Yu Huang\",\"doi\":\"10.1080/14689367.2022.2054311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, by replacing the Bowen metric with the Feldman–Katok (FK) metric and the mean metric, respectively, we introduce measure-theoretic restricted FK (mean) sensitivities and topological restricted FK (mean) sensitivities. For a topological dynamical system, we discuss the relationships among measure-theoretic asymptotic FK rate with respect to sensitivity, topological asymptotic FK rate with respect to sensitivity, Brin–Katok local entropy and topological entropy. Parallel results are obtained for the mean metric case. In addition, we characterize the measure-theoretic entropy in terms of the exponential growth rate of the n-th return time to dynamical balls with respect to FK or mean metric. We also construct conditional entropy formulae with respect to FK metrics and the mean metrics.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/14689367.2022.2054311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/14689367.2022.2054311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在本文中,通过将Bowen度量分别替换为Feldman–Katok(FK)度量和均值度量,我们引入了测度理论限制的FK(均值)灵敏度和拓扑限制的FK。对于拓扑动力系统,我们讨论了测度论渐近FK速率与灵敏度、拓扑渐近FK率与灵敏度、Brin–Katok局部熵和拓扑熵之间的关系。对于平均度量情况,获得了并行结果。此外,我们用动态球第n次返回时间相对于FK或平均度量的指数增长率来表征测度理论熵。我们还构造了关于FK度量和均值度量的条件熵公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Restricted sensitivity, return time and entropy in Feldman–Katok and mean metrics
In this paper, by replacing the Bowen metric with the Feldman–Katok (FK) metric and the mean metric, respectively, we introduce measure-theoretic restricted FK (mean) sensitivities and topological restricted FK (mean) sensitivities. For a topological dynamical system, we discuss the relationships among measure-theoretic asymptotic FK rate with respect to sensitivity, topological asymptotic FK rate with respect to sensitivity, Brin–Katok local entropy and topological entropy. Parallel results are obtained for the mean metric case. In addition, we characterize the measure-theoretic entropy in terms of the exponential growth rate of the n-th return time to dynamical balls with respect to FK or mean metric. We also construct conditional entropy formulae with respect to FK metrics and the mean metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信