{"title":"通过递归神经网络探测阿尔茨海默病的潜在脑动力学","authors":"Tong Li, Jiang Wang, Shanshan Li, Kai Li","doi":"10.1007/s11571-023-09981-9","DOIUrl":null,"url":null,"abstract":"<p><p>The impairment of cognitive function in Alzheimer's disease (AD) is clearly correlated to abnormal changes in cortical rhythm. However, the mechanisms underlying this correlation are still poorly understood. Here, we investigate how network structure and dynamical characteristics alter their abnormal changes in cortical rhythm. To that end, biological data of AD and normal participates are collected. By extracting the energy characteristics of different sub-bands in EEG signals, we find that the rhythm of AD patients is special particularly in theta and alpha bands. The cortical rhythm of normal state is mainly at alpha band, while that of AD state shift to the theta band. Furthermore, recurrent neural network (RNN) is trained to explore the rhythm formation and transformation between two neural states from the perspective view of neurocomputation. It is found that the neural coupling strength decreases significantly under AD state when compared with normal state, which weakens the ability of information transmission in AD state. Besides, the low-dimensional properties of RNN are obtained. By analyzing the relationship between the cortical rhythm transition and the low-dimensional trajectory, it is concluded that the low-dimensional trajectory update is slower and the communication cost is higher in AD state, which explains the abnormal synchronization of AD brain network. Our work reveals the causes for the formation of abnormal brain synchronous functional network status, which may expand our understanding of the mechanism of cognitive impairment in AD and provide an EEG biomarker for early AD.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11143160/pdf/","citationCount":"0","resultStr":"{\"title\":\"Probing latent brain dynamics in Alzheimer's disease via recurrent neural network.\",\"authors\":\"Tong Li, Jiang Wang, Shanshan Li, Kai Li\",\"doi\":\"10.1007/s11571-023-09981-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The impairment of cognitive function in Alzheimer's disease (AD) is clearly correlated to abnormal changes in cortical rhythm. However, the mechanisms underlying this correlation are still poorly understood. Here, we investigate how network structure and dynamical characteristics alter their abnormal changes in cortical rhythm. To that end, biological data of AD and normal participates are collected. By extracting the energy characteristics of different sub-bands in EEG signals, we find that the rhythm of AD patients is special particularly in theta and alpha bands. The cortical rhythm of normal state is mainly at alpha band, while that of AD state shift to the theta band. Furthermore, recurrent neural network (RNN) is trained to explore the rhythm formation and transformation between two neural states from the perspective view of neurocomputation. It is found that the neural coupling strength decreases significantly under AD state when compared with normal state, which weakens the ability of information transmission in AD state. Besides, the low-dimensional properties of RNN are obtained. By analyzing the relationship between the cortical rhythm transition and the low-dimensional trajectory, it is concluded that the low-dimensional trajectory update is slower and the communication cost is higher in AD state, which explains the abnormal synchronization of AD brain network. Our work reveals the causes for the formation of abnormal brain synchronous functional network status, which may expand our understanding of the mechanism of cognitive impairment in AD and provide an EEG biomarker for early AD.</p>\",\"PeriodicalId\":10500,\"journal\":{\"name\":\"Cognitive Neurodynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11143160/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neurodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-023-09981-9\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-023-09981-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Probing latent brain dynamics in Alzheimer's disease via recurrent neural network.
The impairment of cognitive function in Alzheimer's disease (AD) is clearly correlated to abnormal changes in cortical rhythm. However, the mechanisms underlying this correlation are still poorly understood. Here, we investigate how network structure and dynamical characteristics alter their abnormal changes in cortical rhythm. To that end, biological data of AD and normal participates are collected. By extracting the energy characteristics of different sub-bands in EEG signals, we find that the rhythm of AD patients is special particularly in theta and alpha bands. The cortical rhythm of normal state is mainly at alpha band, while that of AD state shift to the theta band. Furthermore, recurrent neural network (RNN) is trained to explore the rhythm formation and transformation between two neural states from the perspective view of neurocomputation. It is found that the neural coupling strength decreases significantly under AD state when compared with normal state, which weakens the ability of information transmission in AD state. Besides, the low-dimensional properties of RNN are obtained. By analyzing the relationship between the cortical rhythm transition and the low-dimensional trajectory, it is concluded that the low-dimensional trajectory update is slower and the communication cost is higher in AD state, which explains the abnormal synchronization of AD brain network. Our work reveals the causes for the formation of abnormal brain synchronous functional network status, which may expand our understanding of the mechanism of cognitive impairment in AD and provide an EEG biomarker for early AD.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.