求助PDF
{"title":"鞍座连接的刚性复杂","authors":"Valentina Disarlo, Anja Randecker, Robert Tang","doi":"10.1112/topo.12242","DOIUrl":null,"url":null,"abstract":"<p>For a half-translation surface <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>S</mi>\n <mo>,</mo>\n <mi>q</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(S,q)$</annotation>\n </semantics></math>, the associated <i>saddle connection complex</i> <math>\n <semantics>\n <mrow>\n <mi>A</mi>\n <mo>(</mo>\n <mi>S</mi>\n <mo>,</mo>\n <mi>q</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathcal {A}(S,q)$</annotation>\n </semantics></math> is the simplicial complex where vertices are the saddle connections on <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>S</mi>\n <mo>,</mo>\n <mi>q</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(S,q)$</annotation>\n </semantics></math>, with simplices spanned by sets of pairwise disjoint saddle connections. This complex can be naturally regarded as an induced subcomplex of the arc complex. We prove that any simplicial isomorphism <math>\n <semantics>\n <mrow>\n <mi>ϕ</mi>\n <mo>:</mo>\n <mi>A</mi>\n <mrow>\n <mo>(</mo>\n <mi>S</mi>\n <mo>,</mo>\n <mi>q</mi>\n <mo>)</mo>\n </mrow>\n <mo>→</mo>\n <mi>A</mi>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>S</mi>\n <mo>′</mo>\n </msup>\n <mo>,</mo>\n <msup>\n <mi>q</mi>\n <mo>′</mo>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\phi \\colon \\mathcal {A}(S,q) \\rightarrow \\mathcal {A}(S^{\\prime },q^{\\prime })$</annotation>\n </semantics></math> between saddle connection complexes is induced by an affine diffeomorphism <math>\n <semantics>\n <mrow>\n <mi>F</mi>\n <mo>:</mo>\n <mrow>\n <mo>(</mo>\n <mi>S</mi>\n <mo>,</mo>\n <mi>q</mi>\n <mo>)</mo>\n </mrow>\n <mo>→</mo>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>S</mi>\n <mo>′</mo>\n </msup>\n <mo>,</mo>\n <msup>\n <mi>q</mi>\n <mo>′</mo>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$F \\colon (S,q) \\rightarrow (S^{\\prime },q^{\\prime })$</annotation>\n </semantics></math>. In particular, this shows that the saddle connection complex is a complete invariant of affine equivalence classes of half-translation surfaces. Throughout our proof, we develop several combinatorial criteria of independent interest for detecting various geometric objects on a half-translation surface.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Rigidity of the saddle connection complex\",\"authors\":\"Valentina Disarlo, Anja Randecker, Robert Tang\",\"doi\":\"10.1112/topo.12242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a half-translation surface <math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>S</mi>\\n <mo>,</mo>\\n <mi>q</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(S,q)$</annotation>\\n </semantics></math>, the associated <i>saddle connection complex</i> <math>\\n <semantics>\\n <mrow>\\n <mi>A</mi>\\n <mo>(</mo>\\n <mi>S</mi>\\n <mo>,</mo>\\n <mi>q</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\mathcal {A}(S,q)$</annotation>\\n </semantics></math> is the simplicial complex where vertices are the saddle connections on <math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>S</mi>\\n <mo>,</mo>\\n <mi>q</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(S,q)$</annotation>\\n </semantics></math>, with simplices spanned by sets of pairwise disjoint saddle connections. This complex can be naturally regarded as an induced subcomplex of the arc complex. We prove that any simplicial isomorphism <math>\\n <semantics>\\n <mrow>\\n <mi>ϕ</mi>\\n <mo>:</mo>\\n <mi>A</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>S</mi>\\n <mo>,</mo>\\n <mi>q</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>→</mo>\\n <mi>A</mi>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>S</mi>\\n <mo>′</mo>\\n </msup>\\n <mo>,</mo>\\n <msup>\\n <mi>q</mi>\\n <mo>′</mo>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\phi \\\\colon \\\\mathcal {A}(S,q) \\\\rightarrow \\\\mathcal {A}(S^{\\\\prime },q^{\\\\prime })$</annotation>\\n </semantics></math> between saddle connection complexes is induced by an affine diffeomorphism <math>\\n <semantics>\\n <mrow>\\n <mi>F</mi>\\n <mo>:</mo>\\n <mrow>\\n <mo>(</mo>\\n <mi>S</mi>\\n <mo>,</mo>\\n <mi>q</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>→</mo>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>S</mi>\\n <mo>′</mo>\\n </msup>\\n <mo>,</mo>\\n <msup>\\n <mi>q</mi>\\n <mo>′</mo>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$F \\\\colon (S,q) \\\\rightarrow (S^{\\\\prime },q^{\\\\prime })$</annotation>\\n </semantics></math>. In particular, this shows that the saddle connection complex is a complete invariant of affine equivalence classes of half-translation surfaces. Throughout our proof, we develop several combinatorial criteria of independent interest for detecting various geometric objects on a half-translation surface.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.12242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
引用
批量引用