鞍座连接的刚性复杂

Pub Date : 2022-06-30 DOI:10.1112/topo.12242
Valentina Disarlo, Anja Randecker, Robert Tang
{"title":"鞍座连接的刚性复杂","authors":"Valentina Disarlo,&nbsp;Anja Randecker,&nbsp;Robert Tang","doi":"10.1112/topo.12242","DOIUrl":null,"url":null,"abstract":"<p>For a half-translation surface <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>S</mi>\n <mo>,</mo>\n <mi>q</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(S,q)$</annotation>\n </semantics></math>, the associated <i>saddle connection complex</i> <math>\n <semantics>\n <mrow>\n <mi>A</mi>\n <mo>(</mo>\n <mi>S</mi>\n <mo>,</mo>\n <mi>q</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathcal {A}(S,q)$</annotation>\n </semantics></math> is the simplicial complex where vertices are the saddle connections on <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>S</mi>\n <mo>,</mo>\n <mi>q</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(S,q)$</annotation>\n </semantics></math>, with simplices spanned by sets of pairwise disjoint saddle connections. This complex can be naturally regarded as an induced subcomplex of the arc complex. We prove that any simplicial isomorphism <math>\n <semantics>\n <mrow>\n <mi>ϕ</mi>\n <mo>:</mo>\n <mi>A</mi>\n <mrow>\n <mo>(</mo>\n <mi>S</mi>\n <mo>,</mo>\n <mi>q</mi>\n <mo>)</mo>\n </mrow>\n <mo>→</mo>\n <mi>A</mi>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>S</mi>\n <mo>′</mo>\n </msup>\n <mo>,</mo>\n <msup>\n <mi>q</mi>\n <mo>′</mo>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\phi \\colon \\mathcal {A}(S,q) \\rightarrow \\mathcal {A}(S^{\\prime },q^{\\prime })$</annotation>\n </semantics></math> between saddle connection complexes is induced by an affine diffeomorphism <math>\n <semantics>\n <mrow>\n <mi>F</mi>\n <mo>:</mo>\n <mrow>\n <mo>(</mo>\n <mi>S</mi>\n <mo>,</mo>\n <mi>q</mi>\n <mo>)</mo>\n </mrow>\n <mo>→</mo>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>S</mi>\n <mo>′</mo>\n </msup>\n <mo>,</mo>\n <msup>\n <mi>q</mi>\n <mo>′</mo>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$F \\colon (S,q) \\rightarrow (S^{\\prime },q^{\\prime })$</annotation>\n </semantics></math>. In particular, this shows that the saddle connection complex is a complete invariant of affine equivalence classes of half-translation surfaces. Throughout our proof, we develop several combinatorial criteria of independent interest for detecting various geometric objects on a half-translation surface.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Rigidity of the saddle connection complex\",\"authors\":\"Valentina Disarlo,&nbsp;Anja Randecker,&nbsp;Robert Tang\",\"doi\":\"10.1112/topo.12242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a half-translation surface <math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>S</mi>\\n <mo>,</mo>\\n <mi>q</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(S,q)$</annotation>\\n </semantics></math>, the associated <i>saddle connection complex</i> <math>\\n <semantics>\\n <mrow>\\n <mi>A</mi>\\n <mo>(</mo>\\n <mi>S</mi>\\n <mo>,</mo>\\n <mi>q</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\mathcal {A}(S,q)$</annotation>\\n </semantics></math> is the simplicial complex where vertices are the saddle connections on <math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>S</mi>\\n <mo>,</mo>\\n <mi>q</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(S,q)$</annotation>\\n </semantics></math>, with simplices spanned by sets of pairwise disjoint saddle connections. This complex can be naturally regarded as an induced subcomplex of the arc complex. We prove that any simplicial isomorphism <math>\\n <semantics>\\n <mrow>\\n <mi>ϕ</mi>\\n <mo>:</mo>\\n <mi>A</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>S</mi>\\n <mo>,</mo>\\n <mi>q</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>→</mo>\\n <mi>A</mi>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>S</mi>\\n <mo>′</mo>\\n </msup>\\n <mo>,</mo>\\n <msup>\\n <mi>q</mi>\\n <mo>′</mo>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\phi \\\\colon \\\\mathcal {A}(S,q) \\\\rightarrow \\\\mathcal {A}(S^{\\\\prime },q^{\\\\prime })$</annotation>\\n </semantics></math> between saddle connection complexes is induced by an affine diffeomorphism <math>\\n <semantics>\\n <mrow>\\n <mi>F</mi>\\n <mo>:</mo>\\n <mrow>\\n <mo>(</mo>\\n <mi>S</mi>\\n <mo>,</mo>\\n <mi>q</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>→</mo>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>S</mi>\\n <mo>′</mo>\\n </msup>\\n <mo>,</mo>\\n <msup>\\n <mi>q</mi>\\n <mo>′</mo>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$F \\\\colon (S,q) \\\\rightarrow (S^{\\\\prime },q^{\\\\prime })$</annotation>\\n </semantics></math>. In particular, this shows that the saddle connection complex is a complete invariant of affine equivalence classes of half-translation surfaces. Throughout our proof, we develop several combinatorial criteria of independent interest for detecting various geometric objects on a half-translation surface.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/topo.12242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.12242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

对于半平移曲面(S, q) $(S,q)$,对应的鞍连接复合体a (S,q) $\mathcal {A}(S,q)$是简单复合体,其中顶点是(S, q) $(S,q)$上的鞍连接,简单复合体是由成对不相交的鞍连接集张成的。这种配合物可以很自然地看作是电弧配合物的诱导亚配合物。我们证明了任意简单同构的φ:A (S, q)→A (S ',鞍连接配合物之间的q′)$\phi \colon \mathcal {A}(S,q) \rightarrow \mathcal {A}(S^{\prime },q^{\prime })$是由仿射微分同构F引起的:(S, q)→(S ',Q ') $F \colon (S,q) \rightarrow (S^{\prime },q^{\prime })$。特别地,这表明鞍连接复形是半平移曲面仿射等价类的完全不变量。在整个证明过程中,我们开发了几个独立的组合准则,用于检测半平移表面上的各种几何物体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Rigidity of the saddle connection complex

For a half-translation surface ( S , q ) $(S,q)$ , the associated saddle connection complex A ( S , q ) $\mathcal {A}(S,q)$ is the simplicial complex where vertices are the saddle connections on  ( S , q ) $(S,q)$ , with simplices spanned by sets of pairwise disjoint saddle connections. This complex can be naturally regarded as an induced subcomplex of the arc complex. We prove that any simplicial isomorphism ϕ : A ( S , q ) A ( S , q ) $\phi \colon \mathcal {A}(S,q) \rightarrow \mathcal {A}(S^{\prime },q^{\prime })$ between saddle connection complexes is induced by an affine diffeomorphism F : ( S , q ) ( S , q ) $F \colon (S,q) \rightarrow (S^{\prime },q^{\prime })$ . In particular, this shows that the saddle connection complex is a complete invariant of affine equivalence classes of half-translation surfaces. Throughout our proof, we develop several combinatorial criteria of independent interest for detecting various geometric objects on a half-translation surface.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信