{"title":"包涵非相对论有效理论中自旋为1 / 2的WIMP的直接探测排除图","authors":"Sunghyun Kang, Injun Jeong, Stefano Scopel","doi":"10.1016/j.astropartphys.2023.102854","DOIUrl":null,"url":null,"abstract":"<div><p><span>Assuming a standard Maxwellian velocity distribution for the WIMPs in the halo of our Galaxy we use the null results of an exhaustive set of 9 direct detection experiments to calculate the maximal variation of the exclusion plot for each Wilson coefficient of the most general Galilean–invariant effective Hamiltonian for a WIMP of spin one half due to interferences. We consider 56 Wilson coefficients </span><span><math><msubsup><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>n</mi></mrow></msubsup></math></span> and <span><math><msubsup><mrow><mi>α</mi></mrow><mrow><mi>i</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>p</mi></mrow></msubsup></math></span> for WIMP–proton and WIMP–neutron contact interactions <span><math><msubsup><mrow><mi>O</mi></mrow><mrow><mi>i</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>n</mi></mrow></msubsup></math></span> and the corresponding long range interaction <span><math><mrow><msubsup><mrow><mi>O</mi></mrow><mrow><mi>i</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>n</mi></mrow></msubsup><mo>/</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>, parameterized by a massless propagator <span><math><mrow><mn>1</mn><mo>/</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>. For each coupling we provide a different exclusion plot when the following set of operators is allowed to interfere: proton–neutron, i.e. <span><math><msubsup><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow><mrow><mi>p</mi></mrow></msubsup></math></span>–<span><math><msubsup><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> or <span><math><msubsup><mrow><mi>α</mi></mrow><mrow><mi>i</mi></mrow><mrow><mi>p</mi></mrow></msubsup></math></span>–<span><math><msubsup><mrow><mi>α</mi></mrow><mrow><mi>i</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span>; contact–contact or long range–long range, i.e. <span><math><msubsup><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>n</mi></mrow></msubsup></math></span>–<span><math><msubsup><mrow><mi>c</mi></mrow><mrow><mi>j</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>n</mi></mrow></msubsup></math></span> or <span><math><msubsup><mrow><mi>α</mi></mrow><mrow><mi>i</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>n</mi></mrow></msubsup></math></span>–<span><math><msubsup><mrow><mi>α</mi></mrow><mrow><mi>j</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>n</mi></mrow></msubsup></math></span>; contact– long range, i.e. <span><math><msubsup><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>n</mi></mrow></msubsup></math></span>–<span><math><msubsup><mrow><mi>α</mi></mrow><mrow><mi>j</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>n</mi></mrow></msubsup></math></span>. For each of the 56 Wilson coefficients <span><math><msubsup><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>n</mi></mrow></msubsup></math></span> and <span><math><msubsup><mrow><mi>α</mi></mrow><mrow><mi>j</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>n</mi></mrow></msubsup></math></span> and for the largest number of interfering operators the exclusion plot variation can reach 3 orders of magnitude and reduces to a factor as small as a few for the Wilson coefficients of the effective interactions where the WIMP couples to the nuclear spin, thanks to the combination of experiments using proton-odd and neutron-odd targets. Some of the conservative bounds require an extremely high level of cancellation, putting into question the reliability of the result. We analyze this issue in a systematic way, showing that it affects some of the couplings driven by the operators <span><math><msub><mrow><mi>O</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>O</mi></mrow><mrow><mn>11</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>O</mi></mrow><mrow><mn>12</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>O</mi></mrow><mrow><mn>15</mn></mrow></msub></math></span>, especially when interferences among contact and long range interactions are considered.</p></div>","PeriodicalId":55439,"journal":{"name":"Astroparticle Physics","volume":"151 ","pages":"Article 102854"},"PeriodicalIF":4.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bracketing the direct detection exclusion plot for a WIMP of spin one half in non-relativistic effective theory\",\"authors\":\"Sunghyun Kang, Injun Jeong, Stefano Scopel\",\"doi\":\"10.1016/j.astropartphys.2023.102854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Assuming a standard Maxwellian velocity distribution for the WIMPs in the halo of our Galaxy we use the null results of an exhaustive set of 9 direct detection experiments to calculate the maximal variation of the exclusion plot for each Wilson coefficient of the most general Galilean–invariant effective Hamiltonian for a WIMP of spin one half due to interferences. We consider 56 Wilson coefficients </span><span><math><msubsup><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>n</mi></mrow></msubsup></math></span> and <span><math><msubsup><mrow><mi>α</mi></mrow><mrow><mi>i</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>p</mi></mrow></msubsup></math></span> for WIMP–proton and WIMP–neutron contact interactions <span><math><msubsup><mrow><mi>O</mi></mrow><mrow><mi>i</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>n</mi></mrow></msubsup></math></span> and the corresponding long range interaction <span><math><mrow><msubsup><mrow><mi>O</mi></mrow><mrow><mi>i</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>n</mi></mrow></msubsup><mo>/</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>, parameterized by a massless propagator <span><math><mrow><mn>1</mn><mo>/</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>. For each coupling we provide a different exclusion plot when the following set of operators is allowed to interfere: proton–neutron, i.e. <span><math><msubsup><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow><mrow><mi>p</mi></mrow></msubsup></math></span>–<span><math><msubsup><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> or <span><math><msubsup><mrow><mi>α</mi></mrow><mrow><mi>i</mi></mrow><mrow><mi>p</mi></mrow></msubsup></math></span>–<span><math><msubsup><mrow><mi>α</mi></mrow><mrow><mi>i</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span>; contact–contact or long range–long range, i.e. <span><math><msubsup><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>n</mi></mrow></msubsup></math></span>–<span><math><msubsup><mrow><mi>c</mi></mrow><mrow><mi>j</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>n</mi></mrow></msubsup></math></span> or <span><math><msubsup><mrow><mi>α</mi></mrow><mrow><mi>i</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>n</mi></mrow></msubsup></math></span>–<span><math><msubsup><mrow><mi>α</mi></mrow><mrow><mi>j</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>n</mi></mrow></msubsup></math></span>; contact– long range, i.e. <span><math><msubsup><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>n</mi></mrow></msubsup></math></span>–<span><math><msubsup><mrow><mi>α</mi></mrow><mrow><mi>j</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>n</mi></mrow></msubsup></math></span>. For each of the 56 Wilson coefficients <span><math><msubsup><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>n</mi></mrow></msubsup></math></span> and <span><math><msubsup><mrow><mi>α</mi></mrow><mrow><mi>j</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>n</mi></mrow></msubsup></math></span> and for the largest number of interfering operators the exclusion plot variation can reach 3 orders of magnitude and reduces to a factor as small as a few for the Wilson coefficients of the effective interactions where the WIMP couples to the nuclear spin, thanks to the combination of experiments using proton-odd and neutron-odd targets. Some of the conservative bounds require an extremely high level of cancellation, putting into question the reliability of the result. We analyze this issue in a systematic way, showing that it affects some of the couplings driven by the operators <span><math><msub><mrow><mi>O</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>O</mi></mrow><mrow><mn>11</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>O</mi></mrow><mrow><mn>12</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>O</mi></mrow><mrow><mn>15</mn></mrow></msub></math></span>, especially when interferences among contact and long range interactions are considered.</p></div>\",\"PeriodicalId\":55439,\"journal\":{\"name\":\"Astroparticle Physics\",\"volume\":\"151 \",\"pages\":\"Article 102854\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927650523000403\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927650523000403","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Bracketing the direct detection exclusion plot for a WIMP of spin one half in non-relativistic effective theory
Assuming a standard Maxwellian velocity distribution for the WIMPs in the halo of our Galaxy we use the null results of an exhaustive set of 9 direct detection experiments to calculate the maximal variation of the exclusion plot for each Wilson coefficient of the most general Galilean–invariant effective Hamiltonian for a WIMP of spin one half due to interferences. We consider 56 Wilson coefficients and for WIMP–proton and WIMP–neutron contact interactions and the corresponding long range interaction , parameterized by a massless propagator . For each coupling we provide a different exclusion plot when the following set of operators is allowed to interfere: proton–neutron, i.e. – or –; contact–contact or long range–long range, i.e. – or –; contact– long range, i.e. –. For each of the 56 Wilson coefficients and and for the largest number of interfering operators the exclusion plot variation can reach 3 orders of magnitude and reduces to a factor as small as a few for the Wilson coefficients of the effective interactions where the WIMP couples to the nuclear spin, thanks to the combination of experiments using proton-odd and neutron-odd targets. Some of the conservative bounds require an extremely high level of cancellation, putting into question the reliability of the result. We analyze this issue in a systematic way, showing that it affects some of the couplings driven by the operators , , , and , especially when interferences among contact and long range interactions are considered.
期刊介绍:
Astroparticle Physics publishes experimental and theoretical research papers in the interacting fields of Cosmic Ray Physics, Astronomy and Astrophysics, Cosmology and Particle Physics focusing on new developments in the following areas: High-energy cosmic-ray physics and astrophysics; Particle cosmology; Particle astrophysics; Related astrophysics: supernova, AGN, cosmic abundances, dark matter etc.; Gravitational waves; High-energy, VHE and UHE gamma-ray astronomy; High- and low-energy neutrino astronomy; Instrumentation and detector developments related to the above-mentioned fields.