Shu Chen, Zhiwu Xu, Zhengwei Li, Zhongwei Ma, Lin Ma, Jiuchun Yan
{"title":"超声波辅助焊接中的水平声毛细管效应","authors":"Shu Chen, Zhiwu Xu, Zhengwei Li, Zhongwei Ma, Lin Ma, Jiuchun Yan","doi":"10.29391/2023.102.009","DOIUrl":null,"url":null,"abstract":"In this work, the horizontal sonocapillary effect in ultrasonic-assisted soldering was investigated via numerical simulations and experiments. The numerical simulation results indicated that acoustic pressures in the liquid solder exhibited distinct sinusoidal features with negative offsets, forming a negative average acoustic pressure. When the ultrasonic vibrations were transmitted to the lower substrate in the joint clearance, the average acoustic pressures decreased from the acoustic pressure center to the filling front, forming a negative acoustic pressure gradient in the horizontal direction. As a result, the solder was sucked into the joint clearance by a large negative acoustic pressure. This sonocapillary effect was verified with experiments. In the calculation model, a high ultrasonic amplitude, a small joint clearance width, and a high base material stiffness increased the acoustic pressure and its average difference on the horizontal direction in the solder, which further improved the driving force of the sonocapillary effect. However, the wetting angle had a small influence on the sonocapillary effect.","PeriodicalId":23681,"journal":{"name":"Welding Journal","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Horizontal Sonocapillary Effect in UltrasonicAssisted Soldering\",\"authors\":\"Shu Chen, Zhiwu Xu, Zhengwei Li, Zhongwei Ma, Lin Ma, Jiuchun Yan\",\"doi\":\"10.29391/2023.102.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, the horizontal sonocapillary effect in ultrasonic-assisted soldering was investigated via numerical simulations and experiments. The numerical simulation results indicated that acoustic pressures in the liquid solder exhibited distinct sinusoidal features with negative offsets, forming a negative average acoustic pressure. When the ultrasonic vibrations were transmitted to the lower substrate in the joint clearance, the average acoustic pressures decreased from the acoustic pressure center to the filling front, forming a negative acoustic pressure gradient in the horizontal direction. As a result, the solder was sucked into the joint clearance by a large negative acoustic pressure. This sonocapillary effect was verified with experiments. In the calculation model, a high ultrasonic amplitude, a small joint clearance width, and a high base material stiffness increased the acoustic pressure and its average difference on the horizontal direction in the solder, which further improved the driving force of the sonocapillary effect. However, the wetting angle had a small influence on the sonocapillary effect.\",\"PeriodicalId\":23681,\"journal\":{\"name\":\"Welding Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Welding Journal\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.29391/2023.102.009\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.29391/2023.102.009","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
The Horizontal Sonocapillary Effect in UltrasonicAssisted Soldering
In this work, the horizontal sonocapillary effect in ultrasonic-assisted soldering was investigated via numerical simulations and experiments. The numerical simulation results indicated that acoustic pressures in the liquid solder exhibited distinct sinusoidal features with negative offsets, forming a negative average acoustic pressure. When the ultrasonic vibrations were transmitted to the lower substrate in the joint clearance, the average acoustic pressures decreased from the acoustic pressure center to the filling front, forming a negative acoustic pressure gradient in the horizontal direction. As a result, the solder was sucked into the joint clearance by a large negative acoustic pressure. This sonocapillary effect was verified with experiments. In the calculation model, a high ultrasonic amplitude, a small joint clearance width, and a high base material stiffness increased the acoustic pressure and its average difference on the horizontal direction in the solder, which further improved the driving force of the sonocapillary effect. However, the wetting angle had a small influence on the sonocapillary effect.
期刊介绍:
The Welding Journal has been published continually since 1922 — an unmatched link to all issues and advancements concerning metal fabrication and construction.
Each month the Welding Journal delivers news of the welding and metal fabricating industry. Stay informed on the latest products, trends, technology and events via in-depth articles, full-color photos and illustrations, and timely, cost-saving advice. Also featured are articles and supplements on related activities, such as testing and inspection, maintenance and repair, design, training, personal safety, and brazing and soldering.