丝网印刷细间距可拉伸银油墨到可穿戴应用的柔性基板上

Q4 Engineering
Jianbiao Pan, Malcolm G. Keif, Joshua Ledgerwood, Xiaoying Rong, Xuan Wang
{"title":"丝网印刷细间距可拉伸银油墨到可穿戴应用的柔性基板上","authors":"Jianbiao Pan, Malcolm G. Keif, Joshua Ledgerwood, Xiaoying Rong, Xuan Wang","doi":"10.4071/2380-4505-2018.1.000665","DOIUrl":null,"url":null,"abstract":"\n This article presents the development and optimization of the screen printing process for printing stretchable silver ink onto a stretchable thermoplastic polyurethane substrate. A test vehicle was designed including 50 μm/5 mm (line width/line length) to 350 μm/35 mm lines (at four biases). A two-level factorial design with three replicates was selected to investigate the effect of process parameters on the quality of prints. We proposed calculated sheet resistance based on the measured resistance value, trace width, and trace length, which can replace trace height measurements on rough profile substrates. We found that squeegee pressure and emulsion thickness have statistically significant effects on calculated sheet resistance of print traces, whereas print speed does not have statistically significant effects. In our experiment setting levels, the lower the squeegee pressure, the lower the calculated sheet resistance that is achieved. The emulsion with higher emulsion over mesh (EOM) is better than the emulsion with lower EOM because it can achieve lower sheet resistance. After optimizing the screen printing process, we were able to print 100 μm (4 mils) trace width and spacing with high consistency.","PeriodicalId":35312,"journal":{"name":"Journal of Microelectronics and Electronic Packaging","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Screen Printing Fine Pitch Stretchable Silver Inks onto a Flexible Substrate for Wearable Applications\",\"authors\":\"Jianbiao Pan, Malcolm G. Keif, Joshua Ledgerwood, Xiaoying Rong, Xuan Wang\",\"doi\":\"10.4071/2380-4505-2018.1.000665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This article presents the development and optimization of the screen printing process for printing stretchable silver ink onto a stretchable thermoplastic polyurethane substrate. A test vehicle was designed including 50 μm/5 mm (line width/line length) to 350 μm/35 mm lines (at four biases). A two-level factorial design with three replicates was selected to investigate the effect of process parameters on the quality of prints. We proposed calculated sheet resistance based on the measured resistance value, trace width, and trace length, which can replace trace height measurements on rough profile substrates. We found that squeegee pressure and emulsion thickness have statistically significant effects on calculated sheet resistance of print traces, whereas print speed does not have statistically significant effects. In our experiment setting levels, the lower the squeegee pressure, the lower the calculated sheet resistance that is achieved. The emulsion with higher emulsion over mesh (EOM) is better than the emulsion with lower EOM because it can achieve lower sheet resistance. After optimizing the screen printing process, we were able to print 100 μm (4 mils) trace width and spacing with high consistency.\",\"PeriodicalId\":35312,\"journal\":{\"name\":\"Journal of Microelectronics and Electronic Packaging\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Microelectronics and Electronic Packaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4071/2380-4505-2018.1.000665\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microelectronics and Electronic Packaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4071/2380-4505-2018.1.000665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

摘要

本文介绍了在可拉伸热塑性聚氨酯基材上印刷可拉伸银油墨的丝网印刷工艺的开发和优化。设计了一个测试车辆,包括50μm/5 mm(线宽/线路长度)至350μm/35 mm的线路(四个偏置)。选择三个重复的两级析因设计来研究工艺参数对印刷品质量的影响。我们提出了基于测量的电阻值、迹线宽度和迹线长度来计算薄层电阻,这可以取代粗糙轮廓衬底上的迹线高度测量。我们发现,刮板压力和乳液厚度对计算出的打印迹线的纸张阻力有统计学上的显著影响,而打印速度没有统计学上的明显影响。在我们的实验设置水平中,刮板压力越低,所获得的计算片材阻力就越低。具有较高网孔乳液(EOM)的乳液比具有较低EOM的乳液更好,因为它可以实现较低的薄层电阻。在优化丝网印刷工艺后,我们能够以高一致性印刷100μm(4密耳)的迹线宽度和间距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Screen Printing Fine Pitch Stretchable Silver Inks onto a Flexible Substrate for Wearable Applications
This article presents the development and optimization of the screen printing process for printing stretchable silver ink onto a stretchable thermoplastic polyurethane substrate. A test vehicle was designed including 50 μm/5 mm (line width/line length) to 350 μm/35 mm lines (at four biases). A two-level factorial design with three replicates was selected to investigate the effect of process parameters on the quality of prints. We proposed calculated sheet resistance based on the measured resistance value, trace width, and trace length, which can replace trace height measurements on rough profile substrates. We found that squeegee pressure and emulsion thickness have statistically significant effects on calculated sheet resistance of print traces, whereas print speed does not have statistically significant effects. In our experiment setting levels, the lower the squeegee pressure, the lower the calculated sheet resistance that is achieved. The emulsion with higher emulsion over mesh (EOM) is better than the emulsion with lower EOM because it can achieve lower sheet resistance. After optimizing the screen printing process, we were able to print 100 μm (4 mils) trace width and spacing with high consistency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Microelectronics and Electronic Packaging
Journal of Microelectronics and Electronic Packaging Engineering-Electrical and Electronic Engineering
CiteScore
1.30
自引率
0.00%
发文量
5
期刊介绍: The International Microelectronics And Packaging Society (IMAPS) is the largest society dedicated to the advancement and growth of microelectronics and electronics packaging technologies through professional education. The Society’s portfolio of technologies is disseminated through symposia, conferences, workshops, professional development courses and other efforts. IMAPS currently has more than 4,000 members in the United States and more than 4,000 international members around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信