{"title":"庞加莱球上独立光子的偏振量子强相关","authors":"A. Vatarescu","doi":"10.20944/preprints202202.0073.v1","DOIUrl":null,"url":null,"abstract":"Polarization-based photonic quantum correlations can be traced back to the overlap of the polarization Stokes vectors on the Poincaré sphere between two polarization filters. Quantum-strong correlations can be obtained with independent polarization states on the Poincaré sphere. The quantum Rayleigh scattering prevents a single photon from propagating in a straight line inside a dielectric medium. The concept of quantum nonlocality is rather questionable because the quantum Rayleigh scattering in a dielectric medium destroys entangled photons.","PeriodicalId":31879,"journal":{"name":"Quantum Beam Science","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Polarimetric Quantum-Strong Correlations with Independent Photons on the Poincaré Sphere\",\"authors\":\"A. Vatarescu\",\"doi\":\"10.20944/preprints202202.0073.v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polarization-based photonic quantum correlations can be traced back to the overlap of the polarization Stokes vectors on the Poincaré sphere between two polarization filters. Quantum-strong correlations can be obtained with independent polarization states on the Poincaré sphere. The quantum Rayleigh scattering prevents a single photon from propagating in a straight line inside a dielectric medium. The concept of quantum nonlocality is rather questionable because the quantum Rayleigh scattering in a dielectric medium destroys entangled photons.\",\"PeriodicalId\":31879,\"journal\":{\"name\":\"Quantum Beam Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Beam Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20944/preprints202202.0073.v1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Beam Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20944/preprints202202.0073.v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Polarimetric Quantum-Strong Correlations with Independent Photons on the Poincaré Sphere
Polarization-based photonic quantum correlations can be traced back to the overlap of the polarization Stokes vectors on the Poincaré sphere between two polarization filters. Quantum-strong correlations can be obtained with independent polarization states on the Poincaré sphere. The quantum Rayleigh scattering prevents a single photon from propagating in a straight line inside a dielectric medium. The concept of quantum nonlocality is rather questionable because the quantum Rayleigh scattering in a dielectric medium destroys entangled photons.