{"title":"基于叶片高度的多级轴流涡轮一维性能预测研究","authors":"Kefang Xu, Ze Yuan, Zhaojun Li, G. Yue","doi":"10.1515/tjj-2023-0058","DOIUrl":null,"url":null,"abstract":"Abstract As turbine operating conditions change, the blade height and tip clearance undergo continuous alterations due to the combined effects of thermal stress, aerodynamic forces and centrifugal forces, subsequently influencing the turbine performance. To take this effect into account in turbine performance prediction, this study considers the influence of fluid-heat-structure coupling on blade height and tip clearance and establishes a one-dimensional comprehensive prediction method for multi-stage axial turbine performance considering blade height. When compared with experimental results from a four-stage axial turbine, by considering the fluid-thermal-solid coupling effects, the average relative error in total pressure ratio prediction is reduced from 3.76 % to 1.99 % and the average relative error in total temperature ratio prediction is reduced from 2.03 % to 1.26 %. Compared with the traditional flow prediction method, the prediction results of turbine characteristics considering blade height and tip clearance changes in this paper are closer to the experimental results.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on one-dimensional performance prediction of multi-stage axial turbine based on the blade height\",\"authors\":\"Kefang Xu, Ze Yuan, Zhaojun Li, G. Yue\",\"doi\":\"10.1515/tjj-2023-0058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract As turbine operating conditions change, the blade height and tip clearance undergo continuous alterations due to the combined effects of thermal stress, aerodynamic forces and centrifugal forces, subsequently influencing the turbine performance. To take this effect into account in turbine performance prediction, this study considers the influence of fluid-heat-structure coupling on blade height and tip clearance and establishes a one-dimensional comprehensive prediction method for multi-stage axial turbine performance considering blade height. When compared with experimental results from a four-stage axial turbine, by considering the fluid-thermal-solid coupling effects, the average relative error in total pressure ratio prediction is reduced from 3.76 % to 1.99 % and the average relative error in total temperature ratio prediction is reduced from 2.03 % to 1.26 %. Compared with the traditional flow prediction method, the prediction results of turbine characteristics considering blade height and tip clearance changes in this paper are closer to the experimental results.\",\"PeriodicalId\":50284,\"journal\":{\"name\":\"International Journal of Turbo & Jet-Engines\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Turbo & Jet-Engines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/tjj-2023-0058\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Turbo & Jet-Engines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/tjj-2023-0058","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Study on one-dimensional performance prediction of multi-stage axial turbine based on the blade height
Abstract As turbine operating conditions change, the blade height and tip clearance undergo continuous alterations due to the combined effects of thermal stress, aerodynamic forces and centrifugal forces, subsequently influencing the turbine performance. To take this effect into account in turbine performance prediction, this study considers the influence of fluid-heat-structure coupling on blade height and tip clearance and establishes a one-dimensional comprehensive prediction method for multi-stage axial turbine performance considering blade height. When compared with experimental results from a four-stage axial turbine, by considering the fluid-thermal-solid coupling effects, the average relative error in total pressure ratio prediction is reduced from 3.76 % to 1.99 % and the average relative error in total temperature ratio prediction is reduced from 2.03 % to 1.26 %. Compared with the traditional flow prediction method, the prediction results of turbine characteristics considering blade height and tip clearance changes in this paper are closer to the experimental results.
期刊介绍:
The Main aim and scope of this Journal is to help improve each separate components R&D and superimpose separated results to get integrated systems by striving to reach the overall advanced design and benefits by integrating: (a) Physics, Aero, and Stealth Thermodynamics in simulations by flying unmanned or manned prototypes supported by integrated Computer Simulations based on: (b) Component R&D of: (i) Turbo and Jet-Engines, (ii) Airframe, (iii) Helmet-Aiming-Systems and Ammunition based on: (c) Anticipated New Programs Missions based on (d) IMPROVED RELIABILITY, DURABILITY, ECONOMICS, TACTICS, STRATEGIES and EDUCATION in both the civil and military domains of Turbo and Jet Engines.
The International Journal of Turbo & Jet Engines is devoted to cutting edge research in theory and design of propagation of jet aircraft. It serves as an international publication organ for new ideas, insights and results from industry and academic research on thermodynamics, combustion, behavior of related materials at high temperatures, turbine and engine design, thrust vectoring and flight control as well as energy and environmental issues.