Bruce W. Jordan, Z. Klagsbrun, B. Poonen, C. Skinner, Yevgeny Zaytman
{"title":"变二次数域的环的模p K-群的统计","authors":"Bruce W. Jordan, Z. Klagsbrun, B. Poonen, C. Skinner, Yevgeny Zaytman","doi":"10.2140/tunis.2020.2.287","DOIUrl":null,"url":null,"abstract":"For each odd prime $p$, we conjecture the distribution of the $p$-torsion subgroup of $K_{2n}(\\mathcal{O}_F)$ as $F$ ranges over real quadratic fields, or over imaginary quadratic fields. We then prove that the average size of the $3$-torsion subgroup of $K_{2n}(\\mathcal{O}_F)$ is as predicted by this conjecture.","PeriodicalId":36030,"journal":{"name":"Tunisian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2140/tunis.2020.2.287","citationCount":"5","resultStr":"{\"title\":\"Statistics of K-groups modulo p for the ring of\\nintegers of a varying quadratic number field\",\"authors\":\"Bruce W. Jordan, Z. Klagsbrun, B. Poonen, C. Skinner, Yevgeny Zaytman\",\"doi\":\"10.2140/tunis.2020.2.287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For each odd prime $p$, we conjecture the distribution of the $p$-torsion subgroup of $K_{2n}(\\\\mathcal{O}_F)$ as $F$ ranges over real quadratic fields, or over imaginary quadratic fields. We then prove that the average size of the $3$-torsion subgroup of $K_{2n}(\\\\mathcal{O}_F)$ is as predicted by this conjecture.\",\"PeriodicalId\":36030,\"journal\":{\"name\":\"Tunisian Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2140/tunis.2020.2.287\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tunisian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/tunis.2020.2.287\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunisian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/tunis.2020.2.287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Statistics of K-groups modulo p for the ring of
integers of a varying quadratic number field
For each odd prime $p$, we conjecture the distribution of the $p$-torsion subgroup of $K_{2n}(\mathcal{O}_F)$ as $F$ ranges over real quadratic fields, or over imaginary quadratic fields. We then prove that the average size of the $3$-torsion subgroup of $K_{2n}(\mathcal{O}_F)$ is as predicted by this conjecture.