变二次数域的环的模p K-群的统计

IF 0.8 Q2 MATHEMATICS
Bruce W. Jordan, Z. Klagsbrun, B. Poonen, C. Skinner, Yevgeny Zaytman
{"title":"变二次数域的环的模p K-群的统计","authors":"Bruce W. Jordan, Z. Klagsbrun, B. Poonen, C. Skinner, Yevgeny Zaytman","doi":"10.2140/tunis.2020.2.287","DOIUrl":null,"url":null,"abstract":"For each odd prime $p$, we conjecture the distribution of the $p$-torsion subgroup of $K_{2n}(\\mathcal{O}_F)$ as $F$ ranges over real quadratic fields, or over imaginary quadratic fields. We then prove that the average size of the $3$-torsion subgroup of $K_{2n}(\\mathcal{O}_F)$ is as predicted by this conjecture.","PeriodicalId":36030,"journal":{"name":"Tunisian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2140/tunis.2020.2.287","citationCount":"5","resultStr":"{\"title\":\"Statistics of K-groups modulo p for the ring of\\nintegers of a varying quadratic number field\",\"authors\":\"Bruce W. Jordan, Z. Klagsbrun, B. Poonen, C. Skinner, Yevgeny Zaytman\",\"doi\":\"10.2140/tunis.2020.2.287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For each odd prime $p$, we conjecture the distribution of the $p$-torsion subgroup of $K_{2n}(\\\\mathcal{O}_F)$ as $F$ ranges over real quadratic fields, or over imaginary quadratic fields. We then prove that the average size of the $3$-torsion subgroup of $K_{2n}(\\\\mathcal{O}_F)$ is as predicted by this conjecture.\",\"PeriodicalId\":36030,\"journal\":{\"name\":\"Tunisian Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2140/tunis.2020.2.287\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tunisian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/tunis.2020.2.287\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunisian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/tunis.2020.2.287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

对于每一个奇素数$p$,我们推测$K_{2n}(\mathcal{O}_F)$的$p$-扭转子群在$F$范围内在实二次域或虚二次域上的分布。然后我们证明了$K_{2n}(\mathcal{O}_F)$的$3$-扭转子群的平均大小与这个猜想所预测的一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistics of K-groups modulo p for the ring of integers of a varying quadratic number field
For each odd prime $p$, we conjecture the distribution of the $p$-torsion subgroup of $K_{2n}(\mathcal{O}_F)$ as $F$ ranges over real quadratic fields, or over imaginary quadratic fields. We then prove that the average size of the $3$-torsion subgroup of $K_{2n}(\mathcal{O}_F)$ is as predicted by this conjecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tunisian Journal of Mathematics
Tunisian Journal of Mathematics Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信