基于深度神经网络的深度相机图像降噪

Q4 Engineering
Seyed m. Mahdavi, M. Ashourian
{"title":"基于深度神经网络的深度相机图像降噪","authors":"Seyed m. Mahdavi, M. Ashourian","doi":"10.29252/MJEE.14.3.12","DOIUrl":null,"url":null,"abstract":"Today, infrared sensors or depth sensors are widely used to control applications, games, information acquisition, dynamic and static 3D scenes. Despite the widespread use of these images, their quality is limited to low-quality images, as the infrared sensor does not have high resolution and the images produced by it have noise. Therefore, given the problems and the importance of using 3-D images, the quality of these images should be improved in order to provide accurate images from depth cameras. In this paper, the noise reduction of depth images using convolutional neural networks is considered. A convolutional neural network with a depth of 20 and three layers and a pre-trained neural network is used. We developed the system and tested its performance for two datasets of depth and color images, Middlebury and EURECOM Kinect Face. Results show that for EURECOM Kinect Face images, PSNR improvement is approximately 8 to 15 dB and for Middlebury images the PSNR improvement is about 5 to 14 dB.","PeriodicalId":37804,"journal":{"name":"Majlesi Journal of Electrical Engineering","volume":"14 1","pages":"95-100"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Noise Reduction of Depth Cameras Images Based on Deep Neural Network\",\"authors\":\"Seyed m. Mahdavi, M. Ashourian\",\"doi\":\"10.29252/MJEE.14.3.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today, infrared sensors or depth sensors are widely used to control applications, games, information acquisition, dynamic and static 3D scenes. Despite the widespread use of these images, their quality is limited to low-quality images, as the infrared sensor does not have high resolution and the images produced by it have noise. Therefore, given the problems and the importance of using 3-D images, the quality of these images should be improved in order to provide accurate images from depth cameras. In this paper, the noise reduction of depth images using convolutional neural networks is considered. A convolutional neural network with a depth of 20 and three layers and a pre-trained neural network is used. We developed the system and tested its performance for two datasets of depth and color images, Middlebury and EURECOM Kinect Face. Results show that for EURECOM Kinect Face images, PSNR improvement is approximately 8 to 15 dB and for Middlebury images the PSNR improvement is about 5 to 14 dB.\",\"PeriodicalId\":37804,\"journal\":{\"name\":\"Majlesi Journal of Electrical Engineering\",\"volume\":\"14 1\",\"pages\":\"95-100\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Majlesi Journal of Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29252/MJEE.14.3.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Majlesi Journal of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29252/MJEE.14.3.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

如今,红外传感器或深度传感器被广泛用于控制应用、游戏、信息采集、动态和静态3D场景。尽管这些图像被广泛使用,但它们的质量仅限于低质量图像,因为红外传感器不具有高分辨率,并且由其产生的图像具有噪声。因此,考虑到使用3D图像的问题和重要性,应该提高这些图像的质量,以便从深度相机提供准确的图像。本文考虑了使用卷积神经网络对深度图像进行降噪。使用深度为20和三层的卷积神经网络和预先训练的神经网络。我们开发了该系统,并在Middlebury和EURECOM Kinect Face两个深度和彩色图像数据集上测试了其性能。结果表明,对于EURECOM Kinect Face图像,PSNR改善约为8-15dB,而对于Middlebury图像,PSNR改善约为5-14dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Noise Reduction of Depth Cameras Images Based on Deep Neural Network
Today, infrared sensors or depth sensors are widely used to control applications, games, information acquisition, dynamic and static 3D scenes. Despite the widespread use of these images, their quality is limited to low-quality images, as the infrared sensor does not have high resolution and the images produced by it have noise. Therefore, given the problems and the importance of using 3-D images, the quality of these images should be improved in order to provide accurate images from depth cameras. In this paper, the noise reduction of depth images using convolutional neural networks is considered. A convolutional neural network with a depth of 20 and three layers and a pre-trained neural network is used. We developed the system and tested its performance for two datasets of depth and color images, Middlebury and EURECOM Kinect Face. Results show that for EURECOM Kinect Face images, PSNR improvement is approximately 8 to 15 dB and for Middlebury images the PSNR improvement is about 5 to 14 dB.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Majlesi Journal of Electrical Engineering
Majlesi Journal of Electrical Engineering Engineering-Electrical and Electronic Engineering
CiteScore
1.20
自引率
0.00%
发文量
9
期刊介绍: The scope of Majlesi Journal of Electrcial Engineering (MJEE) is ranging from mathematical foundation to practical engineering design in all areas of electrical engineering. The editorial board is international and original unpublished papers are welcome from throughout the world. The journal is devoted primarily to research papers, but very high quality survey and tutorial papers are also published. There is no publication charge for the authors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信