{"title":"基于三维数字图像相关的复合材料结构地下冲击损伤成像","authors":"T. Abbott, F. Yuan","doi":"10.1177/14759217231172297","DOIUrl":null,"url":null,"abstract":"An integrated system is proposed to visualize subsurface barely visible impact damage (BVID) in composite structures using three-dimensional (3D) digital image correlation (3D DIC). This system uses a pair of digital cameras to record video frames in the field-of-view (FOV) of the structure’s surface, capturing the wavefield generated via chirp excitation in the near-ultrasonic frequency range. Significant pitfalls of previous efforts of damage imaging using two-dimensional DIC have been largely mitigated. First, 3D DIC enables capturing out-of-plane displacements, which are much larger in amplitude versus in-plane displacements that a single camera would be limited to sensing, thus increasing the signal-to-noise ratio. This enhancement in turn increases the sensitivity of the stereo-camera system. Second, a total wave energy (TWE) damage imaging condition is proposed to visualize the local damage region. The monogenic signal obtained via Reisz transform (RT) is employed to compute the instantaneous amplitude, with which the local wave energy can be calculated spatially over time. Since a high displacement amplitude and thus high wave energy will occur in the damage region due to the local resonance, the proposed TWE imaging condition can relax the Nyquist sampling requirement, unlike guided-wave-based structural health monitoring techniques which require fully reconstructing the wavefield and wave modes through sampling that satisfies the Nyquist criterion. As such, a much lower camera frame rate is adequate for the proposed system. Consequently, the maximum spatial resolution of the camera for a given FOV can be achieved at the expense of a reduced frame rate. With the maximized pixel resolution and reduced frame rate for employing the TWE imaging condition, composite structures can be inspected or monitored with a larger FOV. As a result, there is no longer any need to apply signal enhancement techniques, such as sample interleaving, image stitching, or averaging, to increase the effective performance of the camera. Rather than needing thousands of repeated videos for minimizing the incoherent noise, only a single stereo-video with a few seconds of sampling duration is necessary for damage imaging. The use of a powerful piezo-shaker also increases the wave signal amplitude and further enhances sensitivity without permanent adhesion. To demonstrate this stereo-camera concept with the TWE imaging condition, the system was used to image damage in two carbon fiber reinforced polymer composite honeycomb panels, which had been subjected to low-velocity impacts (2 J). For each panel, two excitation configurations were used to verify the robustness of the system. Initial damage maps produced for a 100 × 100-mm FOV using a three-second stereo-video show accurate damage imaging ability that is independent of excitation location and comparable to benchmark damage images computed from laser Doppler vibrometer data and those gathered from ultrasonic and X-ray computerized tomography scans. This efficient and reliable integrated system demonstrated high potential for in-time damage inspection on composite aircraft and other critical structures.","PeriodicalId":51184,"journal":{"name":"Structural Health Monitoring-An International Journal","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Subsurface impact damage imaging for composite structures using 3D digital image correlation\",\"authors\":\"T. Abbott, F. Yuan\",\"doi\":\"10.1177/14759217231172297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An integrated system is proposed to visualize subsurface barely visible impact damage (BVID) in composite structures using three-dimensional (3D) digital image correlation (3D DIC). This system uses a pair of digital cameras to record video frames in the field-of-view (FOV) of the structure’s surface, capturing the wavefield generated via chirp excitation in the near-ultrasonic frequency range. Significant pitfalls of previous efforts of damage imaging using two-dimensional DIC have been largely mitigated. First, 3D DIC enables capturing out-of-plane displacements, which are much larger in amplitude versus in-plane displacements that a single camera would be limited to sensing, thus increasing the signal-to-noise ratio. This enhancement in turn increases the sensitivity of the stereo-camera system. Second, a total wave energy (TWE) damage imaging condition is proposed to visualize the local damage region. The monogenic signal obtained via Reisz transform (RT) is employed to compute the instantaneous amplitude, with which the local wave energy can be calculated spatially over time. Since a high displacement amplitude and thus high wave energy will occur in the damage region due to the local resonance, the proposed TWE imaging condition can relax the Nyquist sampling requirement, unlike guided-wave-based structural health monitoring techniques which require fully reconstructing the wavefield and wave modes through sampling that satisfies the Nyquist criterion. As such, a much lower camera frame rate is adequate for the proposed system. Consequently, the maximum spatial resolution of the camera for a given FOV can be achieved at the expense of a reduced frame rate. With the maximized pixel resolution and reduced frame rate for employing the TWE imaging condition, composite structures can be inspected or monitored with a larger FOV. As a result, there is no longer any need to apply signal enhancement techniques, such as sample interleaving, image stitching, or averaging, to increase the effective performance of the camera. Rather than needing thousands of repeated videos for minimizing the incoherent noise, only a single stereo-video with a few seconds of sampling duration is necessary for damage imaging. The use of a powerful piezo-shaker also increases the wave signal amplitude and further enhances sensitivity without permanent adhesion. To demonstrate this stereo-camera concept with the TWE imaging condition, the system was used to image damage in two carbon fiber reinforced polymer composite honeycomb panels, which had been subjected to low-velocity impacts (2 J). For each panel, two excitation configurations were used to verify the robustness of the system. Initial damage maps produced for a 100 × 100-mm FOV using a three-second stereo-video show accurate damage imaging ability that is independent of excitation location and comparable to benchmark damage images computed from laser Doppler vibrometer data and those gathered from ultrasonic and X-ray computerized tomography scans. This efficient and reliable integrated system demonstrated high potential for in-time damage inspection on composite aircraft and other critical structures.\",\"PeriodicalId\":51184,\"journal\":{\"name\":\"Structural Health Monitoring-An International Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2023-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Health Monitoring-An International Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/14759217231172297\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Health Monitoring-An International Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14759217231172297","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
摘要
提出了一种基于三维数字图像相关(3D DIC)的复合材料结构表面下微可见冲击损伤可视化系统。该系统使用一对数码相机在结构表面的视场(FOV)中记录视频帧,捕获由近超声波频率范围内的啁啾激发产生的波场。以前使用二维DIC进行损伤成像的重大缺陷已经在很大程度上得到了缓解。首先,3D DIC能够捕获面外位移,其振幅比单相机只能感知的面内位移大得多,从而提高了信噪比。这种增强反过来又增加了立体相机系统的灵敏度。其次,提出了一种全波能损伤成像条件,用于局部损伤区域的可视化。利用Reisz变换(RT)得到的单基因信号计算瞬时幅值,利用瞬时幅值计算局部波能量随时间的空间分布。由于局部共振会在损伤区域产生高位移振幅和高波能量,因此所提出的TWE成像条件可以放宽Nyquist采样要求,而不像基于导波的结构健康监测技术需要通过满足Nyquist准则的采样来完全重建波场和波模态。因此,一个低得多的相机帧率是足够的,提出的系统。因此,在给定视场的最大空间分辨率的相机可以实现在降低帧率的代价。利用最大的像素分辨率和降低的帧率,采用TWE成像条件,可以在更大的视场下检查或监测复合结构。因此,不再需要应用信号增强技术,如样本交错、图像拼接或平均,以提高相机的有效性能。而不是需要成千上万的重复视频,以尽量减少非相干噪声,只有一个单一的立体视频与几秒钟的采样时间是必要的损伤成像。使用强大的压电激振器也增加了波信号幅度,并进一步提高了灵敏度,而不会永久粘附。为了在TWE成像条件下演示这种立体相机概念,该系统被用于对两块碳纤维增强聚合物复合材料蜂窝板的损伤进行成像,这些蜂窝板受到了低速撞击(2 J)。对于每个面板,采用两种激励配置来验证系统的鲁棒性。使用3秒立体视频对100 × 100 mm FOV生成的初始损伤图显示出与激励位置无关的精确损伤成像能力,可与激光多普勒测震仪数据计算的基准损伤图像以及超声波和x射线计算机断层扫描收集的图像相媲美。这种高效可靠的集成系统在复合材料飞机和其他关键结构的实时损伤检测中具有很大的潜力。
Subsurface impact damage imaging for composite structures using 3D digital image correlation
An integrated system is proposed to visualize subsurface barely visible impact damage (BVID) in composite structures using three-dimensional (3D) digital image correlation (3D DIC). This system uses a pair of digital cameras to record video frames in the field-of-view (FOV) of the structure’s surface, capturing the wavefield generated via chirp excitation in the near-ultrasonic frequency range. Significant pitfalls of previous efforts of damage imaging using two-dimensional DIC have been largely mitigated. First, 3D DIC enables capturing out-of-plane displacements, which are much larger in amplitude versus in-plane displacements that a single camera would be limited to sensing, thus increasing the signal-to-noise ratio. This enhancement in turn increases the sensitivity of the stereo-camera system. Second, a total wave energy (TWE) damage imaging condition is proposed to visualize the local damage region. The monogenic signal obtained via Reisz transform (RT) is employed to compute the instantaneous amplitude, with which the local wave energy can be calculated spatially over time. Since a high displacement amplitude and thus high wave energy will occur in the damage region due to the local resonance, the proposed TWE imaging condition can relax the Nyquist sampling requirement, unlike guided-wave-based structural health monitoring techniques which require fully reconstructing the wavefield and wave modes through sampling that satisfies the Nyquist criterion. As such, a much lower camera frame rate is adequate for the proposed system. Consequently, the maximum spatial resolution of the camera for a given FOV can be achieved at the expense of a reduced frame rate. With the maximized pixel resolution and reduced frame rate for employing the TWE imaging condition, composite structures can be inspected or monitored with a larger FOV. As a result, there is no longer any need to apply signal enhancement techniques, such as sample interleaving, image stitching, or averaging, to increase the effective performance of the camera. Rather than needing thousands of repeated videos for minimizing the incoherent noise, only a single stereo-video with a few seconds of sampling duration is necessary for damage imaging. The use of a powerful piezo-shaker also increases the wave signal amplitude and further enhances sensitivity without permanent adhesion. To demonstrate this stereo-camera concept with the TWE imaging condition, the system was used to image damage in two carbon fiber reinforced polymer composite honeycomb panels, which had been subjected to low-velocity impacts (2 J). For each panel, two excitation configurations were used to verify the robustness of the system. Initial damage maps produced for a 100 × 100-mm FOV using a three-second stereo-video show accurate damage imaging ability that is independent of excitation location and comparable to benchmark damage images computed from laser Doppler vibrometer data and those gathered from ultrasonic and X-ray computerized tomography scans. This efficient and reliable integrated system demonstrated high potential for in-time damage inspection on composite aircraft and other critical structures.
期刊介绍:
Structural Health Monitoring is an international peer reviewed journal that publishes the highest quality original research that contain theoretical, analytical, and experimental investigations that advance the body of knowledge and its application in the discipline of structural health monitoring.