网络动力学中的超定ode和刚性周期态

IF 0.5 4区 数学 Q3 MATHEMATICS
Ian Stewart
{"title":"网络动力学中的超定ode和刚性周期态","authors":"Ian Stewart","doi":"10.4171/pm/2080","DOIUrl":null,"url":null,"abstract":"We consider four long-standing Rigidity Conjectures about synchrony and phase patterns for hyperbolic periodic orbits of admissible ODEs for networks. Proofs of stronger local versions of these conjectures, published in 2010-12, are now known to have a gap, but remain valid for a broad class of networks. Using different methods we prove local versions of the conjectures under a stronger condition, `strong hyperbolicity', which is related to a network analogue of the Kupka-Smale Theorem. Under this condition we also deduce global versions of the conjectures and an analogue of the $H/K$ Theorem in equivariant dynamics. We prove the Rigidity Conjectures for all 1- and 2-colourings and all 2- and 3-node networks by proving that strong hyperbolicity is generic in these cases.","PeriodicalId":51269,"journal":{"name":"Portugaliae Mathematica","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Overdetermined ODEs and rigid periodic states in network dynamics\",\"authors\":\"Ian Stewart\",\"doi\":\"10.4171/pm/2080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider four long-standing Rigidity Conjectures about synchrony and phase patterns for hyperbolic periodic orbits of admissible ODEs for networks. Proofs of stronger local versions of these conjectures, published in 2010-12, are now known to have a gap, but remain valid for a broad class of networks. Using different methods we prove local versions of the conjectures under a stronger condition, `strong hyperbolicity', which is related to a network analogue of the Kupka-Smale Theorem. Under this condition we also deduce global versions of the conjectures and an analogue of the $H/K$ Theorem in equivariant dynamics. We prove the Rigidity Conjectures for all 1- and 2-colourings and all 2- and 3-node networks by proving that strong hyperbolicity is generic in these cases.\",\"PeriodicalId\":51269,\"journal\":{\"name\":\"Portugaliae Mathematica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Portugaliae Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/pm/2080\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Portugaliae Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/pm/2080","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑了关于网络可容许ode的双曲周期轨道的同步和相位模式的四个长期存在的刚性猜想。这些猜想的更强的本地版本的证明,发表于2010- 2012年,现在被认为是有差距的,但对于更广泛的网络类别仍然有效。使用不同的方法,我们在一个更强的条件下证明了这些猜想的局部版本,“强双曲性”,这与库普卡-小定理的网络模拟有关。在此条件下,我们还推导出了这些猜想的全局版本和等变动力学中H/K定理的一个类似形式。通过证明在这些情况下强双曲性是一般的,我们证明了所有1-和2-着色以及所有2-和3-节点网络的刚性猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Overdetermined ODEs and rigid periodic states in network dynamics
We consider four long-standing Rigidity Conjectures about synchrony and phase patterns for hyperbolic periodic orbits of admissible ODEs for networks. Proofs of stronger local versions of these conjectures, published in 2010-12, are now known to have a gap, but remain valid for a broad class of networks. Using different methods we prove local versions of the conjectures under a stronger condition, `strong hyperbolicity', which is related to a network analogue of the Kupka-Smale Theorem. Under this condition we also deduce global versions of the conjectures and an analogue of the $H/K$ Theorem in equivariant dynamics. We prove the Rigidity Conjectures for all 1- and 2-colourings and all 2- and 3-node networks by proving that strong hyperbolicity is generic in these cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Portugaliae Mathematica
Portugaliae Mathematica MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
0.90
自引率
12.50%
发文量
23
审稿时长
>12 weeks
期刊介绍: Since its foundation in 1937, Portugaliae Mathematica has aimed at publishing high-level research articles in all branches of mathematics. With great efforts by its founders, the journal was able to publish articles by some of the best mathematicians of the time. In 2001 a New Series of Portugaliae Mathematica was started, reaffirming the purpose of maintaining a high-level research journal in mathematics with a wide range scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信