Y. Zarate, K. Bosanko, Amrit Kannan, Ashlen Thomason, Beth Nutt, Nihit Kumar, K. Simmons, Aaron Hiegert, Larry D Hartzell, Adam Johnson, Tabitha Prater, Eduardo Pérez-Palma, Tobias Brünger, A. Stefanski, D. Lal, A. Caffrey
{"title":"SATB2相关综合征的定量表型发病率描述","authors":"Y. Zarate, K. Bosanko, Amrit Kannan, Ashlen Thomason, Beth Nutt, Nihit Kumar, K. Simmons, Aaron Hiegert, Larry D Hartzell, Adam Johnson, Tabitha Prater, Eduardo Pérez-Palma, Tobias Brünger, A. Stefanski, D. Lal, A. Caffrey","doi":"10.1155/2023/8200176","DOIUrl":null,"url":null,"abstract":"Characterized by developmental delay with severe speech delay, dental anomalies, cleft palate, skeletal abnormalities, and behavioral difficulties, SATB2-associated syndrome (SAS) is caused by pathogenic variants in SATB2. The SAS phenotype range of severity has been documented previously in large series. Using data from the SAS registry, we present the SAS severity score, a comprehensive scoring rubric that encompasses 15 different individual neurodevelopmental and systemic features. Higher (more severe) systemic and total (sum of neurodevelopmental and systemic scores) scores were seen for null variants located after amino acid 350 (the start of the CUT1 domain), the recurrent missense Arg389Cys variant (\n \n n\n =\n 10\n \n ), intragenic deletions, and larger chromosomal deletions. The Arg389Cys variant had the highest cognitive, verbal, and sialorrhea severity scores, while large chromosomal deletions had the highest expressive, ambulation, palate, feeding and growth, neurodevelopmental, and total scores. Missense variants not located in the CUT1 or CUT2 domain scored lower in several subcategories. We conclude that the SAS severity score allows quantitative phenotype morbidity description that can be used in routine clinical counseling. Further refinement and validation of the SAS severity score are expected over time. All data from this project can be interactively explored in a new portal.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative Phenotype Morbidity Description of SATB2-Associated Syndrome\",\"authors\":\"Y. Zarate, K. Bosanko, Amrit Kannan, Ashlen Thomason, Beth Nutt, Nihit Kumar, K. Simmons, Aaron Hiegert, Larry D Hartzell, Adam Johnson, Tabitha Prater, Eduardo Pérez-Palma, Tobias Brünger, A. Stefanski, D. Lal, A. Caffrey\",\"doi\":\"10.1155/2023/8200176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Characterized by developmental delay with severe speech delay, dental anomalies, cleft palate, skeletal abnormalities, and behavioral difficulties, SATB2-associated syndrome (SAS) is caused by pathogenic variants in SATB2. The SAS phenotype range of severity has been documented previously in large series. Using data from the SAS registry, we present the SAS severity score, a comprehensive scoring rubric that encompasses 15 different individual neurodevelopmental and systemic features. Higher (more severe) systemic and total (sum of neurodevelopmental and systemic scores) scores were seen for null variants located after amino acid 350 (the start of the CUT1 domain), the recurrent missense Arg389Cys variant (\\n \\n n\\n =\\n 10\\n \\n ), intragenic deletions, and larger chromosomal deletions. The Arg389Cys variant had the highest cognitive, verbal, and sialorrhea severity scores, while large chromosomal deletions had the highest expressive, ambulation, palate, feeding and growth, neurodevelopmental, and total scores. Missense variants not located in the CUT1 or CUT2 domain scored lower in several subcategories. We conclude that the SAS severity score allows quantitative phenotype morbidity description that can be used in routine clinical counseling. Further refinement and validation of the SAS severity score are expected over time. All data from this project can be interactively explored in a new portal.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/8200176\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2023/8200176","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Quantitative Phenotype Morbidity Description of SATB2-Associated Syndrome
Characterized by developmental delay with severe speech delay, dental anomalies, cleft palate, skeletal abnormalities, and behavioral difficulties, SATB2-associated syndrome (SAS) is caused by pathogenic variants in SATB2. The SAS phenotype range of severity has been documented previously in large series. Using data from the SAS registry, we present the SAS severity score, a comprehensive scoring rubric that encompasses 15 different individual neurodevelopmental and systemic features. Higher (more severe) systemic and total (sum of neurodevelopmental and systemic scores) scores were seen for null variants located after amino acid 350 (the start of the CUT1 domain), the recurrent missense Arg389Cys variant (
n
=
10
), intragenic deletions, and larger chromosomal deletions. The Arg389Cys variant had the highest cognitive, verbal, and sialorrhea severity scores, while large chromosomal deletions had the highest expressive, ambulation, palate, feeding and growth, neurodevelopmental, and total scores. Missense variants not located in the CUT1 or CUT2 domain scored lower in several subcategories. We conclude that the SAS severity score allows quantitative phenotype morbidity description that can be used in routine clinical counseling. Further refinement and validation of the SAS severity score are expected over time. All data from this project can be interactively explored in a new portal.