黑胡萝卜(胡萝卜汤)红豆属植物提取物通过抑制磷酸二酯酶4mrna表达来保护乙醇性肝损伤

K. A, Norikura T, Matsui-Yuasa I, S. H, K. M, Kojima-Yuasa A
{"title":"黑胡萝卜(胡萝卜汤)红豆属植物提取物通过抑制磷酸二酯酶4mrna表达来保护乙醇性肝损伤","authors":"K. A, Norikura T, Matsui-Yuasa I, S. H, K. M, Kojima-Yuasa A","doi":"10.26420/austinjnutrifoodsci.2021.1154","DOIUrl":null,"url":null,"abstract":"We examined the protective effects of Black Carrot Extract (BCE) on Alcoholic Liver Disease (ALD) using in vivo and in vitro models. In an in vivo ethanol-Carbon Tetrachloride (CCl4)-treated rat model, BCE treatment suppressed serum alanine aminotransferase and aspartate aminotransferase activity. BCE also suppressed ethanol- and CCl4-induced alcoholic liver disease. Furthermore, we observed that the BCE or butanol-extracted fraction of BCE (BCE-BuOH) recovered the cell viability of in vitro ethanol-treated hepatocytes. BCE-BuOH also suppressed the production of reactive oxygen species induced by ethanol to the control level. Moreover, BCE-BuOH regulated the activities of three alcoholic metabolism-related enzymes: cytochrome P450 2E1 activity was suppressed at the posttranslational level, alcohol dehydrogenase activity was increased at the posttranslational level, and aldehyde dehydrogenase 2 activity was increased at the transcriptional level. Novel findings in this study include an increase in intracellular Cyclic Adenosine 3’,5’-Monophosphate (cAMP) levels in hepatocytes with the simultaneous addition of ethanol and BCE-BuOH and the suppression of changes in the activities of three enzymes upon treatment with an inhibitor of cAMP-dependent protein kinase. Our study also found that BCE-BuOH suppressed the expression of phosphodiesterase 4b mRNA, which increased intracellular cAMP levels. These results suggest that BCE is useful for the treatment of ALD.","PeriodicalId":90794,"journal":{"name":"Austin journal of nutrition and food sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Black Carrot (Daucus carota ssp. sativus var. Atrorubens Alef.) Extract Protects against Ethanol-induced Liver Injury via the Suppression of Phosphodiesterase 4 mRNA Expression\",\"authors\":\"K. A, Norikura T, Matsui-Yuasa I, S. H, K. M, Kojima-Yuasa A\",\"doi\":\"10.26420/austinjnutrifoodsci.2021.1154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We examined the protective effects of Black Carrot Extract (BCE) on Alcoholic Liver Disease (ALD) using in vivo and in vitro models. In an in vivo ethanol-Carbon Tetrachloride (CCl4)-treated rat model, BCE treatment suppressed serum alanine aminotransferase and aspartate aminotransferase activity. BCE also suppressed ethanol- and CCl4-induced alcoholic liver disease. Furthermore, we observed that the BCE or butanol-extracted fraction of BCE (BCE-BuOH) recovered the cell viability of in vitro ethanol-treated hepatocytes. BCE-BuOH also suppressed the production of reactive oxygen species induced by ethanol to the control level. Moreover, BCE-BuOH regulated the activities of three alcoholic metabolism-related enzymes: cytochrome P450 2E1 activity was suppressed at the posttranslational level, alcohol dehydrogenase activity was increased at the posttranslational level, and aldehyde dehydrogenase 2 activity was increased at the transcriptional level. Novel findings in this study include an increase in intracellular Cyclic Adenosine 3’,5’-Monophosphate (cAMP) levels in hepatocytes with the simultaneous addition of ethanol and BCE-BuOH and the suppression of changes in the activities of three enzymes upon treatment with an inhibitor of cAMP-dependent protein kinase. Our study also found that BCE-BuOH suppressed the expression of phosphodiesterase 4b mRNA, which increased intracellular cAMP levels. These results suggest that BCE is useful for the treatment of ALD.\",\"PeriodicalId\":90794,\"journal\":{\"name\":\"Austin journal of nutrition and food sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Austin journal of nutrition and food sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26420/austinjnutrifoodsci.2021.1154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Austin journal of nutrition and food sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26420/austinjnutrifoodsci.2021.1154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们使用体内和体外模型研究了黑胡萝卜提取物(BCE)对酒精性肝病(ALD)的保护作用。在体内乙醇-四氯化碳(CCl4)处理的大鼠模型中,BCE处理抑制了血清丙氨酸氨基转移酶和天冬氨酸氨基转移酶的活性。BCE还能抑制乙醇和CCl4诱导的酒精性肝病。此外,我们观察到BCE或丁醇提取的BCE部分(BCE-BuOH)恢复了体外乙醇处理的肝细胞的细胞活力。BCE-BuOH还将乙醇诱导的活性氧的产生抑制到对照水平。此外,BCE-BuOH调节三种醇代谢相关酶的活性:细胞色素P4502E1活性在翻译后水平受到抑制,醇脱氢酶活性在翻译前水平增加,乙醛脱氢酶2活性在转录水平增加。本研究的新发现包括同时添加乙醇和BCE-BuOH可增加肝细胞内环腺苷3',5'-单磷酸(cAMP)水平,并抑制cAMP依赖性蛋白激酶抑制剂处理后三种酶活性的变化。我们的研究还发现BCE-BuOH抑制磷酸二酯酶4b mRNA的表达,从而增加细胞内cAMP水平。这些结果表明BCE对ALD的治疗是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Black Carrot (Daucus carota ssp. sativus var. Atrorubens Alef.) Extract Protects against Ethanol-induced Liver Injury via the Suppression of Phosphodiesterase 4 mRNA Expression
We examined the protective effects of Black Carrot Extract (BCE) on Alcoholic Liver Disease (ALD) using in vivo and in vitro models. In an in vivo ethanol-Carbon Tetrachloride (CCl4)-treated rat model, BCE treatment suppressed serum alanine aminotransferase and aspartate aminotransferase activity. BCE also suppressed ethanol- and CCl4-induced alcoholic liver disease. Furthermore, we observed that the BCE or butanol-extracted fraction of BCE (BCE-BuOH) recovered the cell viability of in vitro ethanol-treated hepatocytes. BCE-BuOH also suppressed the production of reactive oxygen species induced by ethanol to the control level. Moreover, BCE-BuOH regulated the activities of three alcoholic metabolism-related enzymes: cytochrome P450 2E1 activity was suppressed at the posttranslational level, alcohol dehydrogenase activity was increased at the posttranslational level, and aldehyde dehydrogenase 2 activity was increased at the transcriptional level. Novel findings in this study include an increase in intracellular Cyclic Adenosine 3’,5’-Monophosphate (cAMP) levels in hepatocytes with the simultaneous addition of ethanol and BCE-BuOH and the suppression of changes in the activities of three enzymes upon treatment with an inhibitor of cAMP-dependent protein kinase. Our study also found that BCE-BuOH suppressed the expression of phosphodiesterase 4b mRNA, which increased intracellular cAMP levels. These results suggest that BCE is useful for the treatment of ALD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信