{"title":"带步进电机的双轴振动台标定技术","authors":"Erdem Damcı, Ç. Şekerci, Y. Taskin, Koray Gürkan","doi":"10.18400/tekderg.634582","DOIUrl":null,"url":null,"abstract":"Shaking tables are frequently used to determine the dynamic behavior of structures in the laboratory environment. In order to obtain realistic results in experimental studies, table response and performance should be consistent with the desired motion. In this multidisciplinary study, an application of a new method for determining and calibrating the mechanical response of a developed bi-axial displacement controlled shake table according to the desired motion data is presented. The bi-axial shake table's electro-mechanical components consist of stepper motors, ball screw sets, linear ball bearings, and linear potentiometers positioned on both axes for displacement measurements. For the control and data acquisition (DAQ) unit of the shake table, an open-source electronic prototyping platform Arduino was used. From several experimental results, it was seen that, with the presented calibration method, harmonic and earthquake simulations could be achieved with a relative root mean square error (relative RMS error) of less than 5% for desired displacement-time histories.","PeriodicalId":49442,"journal":{"name":"Teknik Dergi","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Calibration Technique for Bi-axial Shake Tables with Stepper Motor\",\"authors\":\"Erdem Damcı, Ç. Şekerci, Y. Taskin, Koray Gürkan\",\"doi\":\"10.18400/tekderg.634582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Shaking tables are frequently used to determine the dynamic behavior of structures in the laboratory environment. In order to obtain realistic results in experimental studies, table response and performance should be consistent with the desired motion. In this multidisciplinary study, an application of a new method for determining and calibrating the mechanical response of a developed bi-axial displacement controlled shake table according to the desired motion data is presented. The bi-axial shake table's electro-mechanical components consist of stepper motors, ball screw sets, linear ball bearings, and linear potentiometers positioned on both axes for displacement measurements. For the control and data acquisition (DAQ) unit of the shake table, an open-source electronic prototyping platform Arduino was used. From several experimental results, it was seen that, with the presented calibration method, harmonic and earthquake simulations could be achieved with a relative root mean square error (relative RMS error) of less than 5% for desired displacement-time histories.\",\"PeriodicalId\":49442,\"journal\":{\"name\":\"Teknik Dergi\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Teknik Dergi\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.18400/tekderg.634582\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Teknik Dergi","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.18400/tekderg.634582","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
A Calibration Technique for Bi-axial Shake Tables with Stepper Motor
Shaking tables are frequently used to determine the dynamic behavior of structures in the laboratory environment. In order to obtain realistic results in experimental studies, table response and performance should be consistent with the desired motion. In this multidisciplinary study, an application of a new method for determining and calibrating the mechanical response of a developed bi-axial displacement controlled shake table according to the desired motion data is presented. The bi-axial shake table's electro-mechanical components consist of stepper motors, ball screw sets, linear ball bearings, and linear potentiometers positioned on both axes for displacement measurements. For the control and data acquisition (DAQ) unit of the shake table, an open-source electronic prototyping platform Arduino was used. From several experimental results, it was seen that, with the presented calibration method, harmonic and earthquake simulations could be achieved with a relative root mean square error (relative RMS error) of less than 5% for desired displacement-time histories.
期刊介绍:
The scope of Teknik Dergi is naturally confined with the subjects falling in the area of civil engineering. However, the area of civil engineering has recently been significantly enlarged, even the definition of civil engineering has somewhat changed.
Half a century ago, engineering was simply defined as “the art of using and converting the natural resources for the benefit of the mankind”. Today, the same objective is expected to be realised (i) by complying with the desire and expectations of the people concerned and (ii) without wasting the resources and within the sustainability principles. This change has required an interaction between engineering and social and administrative sciences. Some subjects at the borderline between civil engineering and social and administrative sciences have consequently been included in the area of civil engineering.
Teknik Dergi defines its scope in line with this understanding. However, it requires the papers falling in the borderline to have a significant component of civil engineering.