J. Blasiak, M. Haiman, J. Morse, Anna Y. Pun, G. Seelinger
{"title":"扩展Delta猜想的一个证明","authors":"J. Blasiak, M. Haiman, J. Morse, Anna Y. Pun, G. Seelinger","doi":"10.1017/fmp.2023.3","DOIUrl":null,"url":null,"abstract":"Abstract We prove the extended delta conjecture of Haglund, Remmel and Wilson, a combinatorial formula for \n$\\Delta _{h_l}\\Delta ' _{e_k} e_{n}$\n , where \n$\\Delta ' _{e_k}$\n and \n$\\Delta _{h_l}$\n are Macdonald eigenoperators and \n$e_n$\n is an elementary symmetric function. We actually prove a stronger identity of infinite series of \n$\\operatorname {\\mathrm {GL}}_m$\n characters expressed in terms of LLT series. This is achieved through new results in the theory of the Schiffmann algebra and its action on the algebra of symmetric functions.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"A Proof of the Extended Delta Conjecture\",\"authors\":\"J. Blasiak, M. Haiman, J. Morse, Anna Y. Pun, G. Seelinger\",\"doi\":\"10.1017/fmp.2023.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We prove the extended delta conjecture of Haglund, Remmel and Wilson, a combinatorial formula for \\n$\\\\Delta _{h_l}\\\\Delta ' _{e_k} e_{n}$\\n , where \\n$\\\\Delta ' _{e_k}$\\n and \\n$\\\\Delta _{h_l}$\\n are Macdonald eigenoperators and \\n$e_n$\\n is an elementary symmetric function. We actually prove a stronger identity of infinite series of \\n$\\\\operatorname {\\\\mathrm {GL}}_m$\\n characters expressed in terms of LLT series. This is achieved through new results in the theory of the Schiffmann algebra and its action on the algebra of symmetric functions.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2021-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fmp.2023.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2023.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Abstract We prove the extended delta conjecture of Haglund, Remmel and Wilson, a combinatorial formula for
$\Delta _{h_l}\Delta ' _{e_k} e_{n}$
, where
$\Delta ' _{e_k}$
and
$\Delta _{h_l}$
are Macdonald eigenoperators and
$e_n$
is an elementary symmetric function. We actually prove a stronger identity of infinite series of
$\operatorname {\mathrm {GL}}_m$
characters expressed in terms of LLT series. This is achieved through new results in the theory of the Schiffmann algebra and its action on the algebra of symmetric functions.