Rajan Ghimire, Megha N. Parajulee, Pramod Acharya, Dol P. Dhakal, Abdul Hakeem, Katie L. Lewis
{"title":"连续棉花生产系统中土壤酸化","authors":"Rajan Ghimire, Megha N. Parajulee, Pramod Acharya, Dol P. Dhakal, Abdul Hakeem, Katie L. Lewis","doi":"10.1002/ael2.20048","DOIUrl":null,"url":null,"abstract":"<p>Effects of nitrogen (N) fertilization on soil organic carbon (SOC) and total N are well established, but their effects on soil acidification and emerging soil health indicators such as labile N and carbon (C) pools are not adequately documented. This research evaluated soil N and C pools and soil pH with long-term N management in continuous cotton (<i>Gossypium hirsutum</i> L.) production. Residual soil inorganic N, potentially mineralizable N and C, total N, SOC, pH, and electrical conductivity were measured after 17 yr of continuous N application. Comparison of five N rates (0, 56, 112, 168, and 224 kg ha<sup>–1</sup>) showed an increase in residual inorganic N pools and decrease in pH with an increase in N application rate, while other parameters did not change significantly. Soil acidification was significant with 168 and 224 kg N ha<sup>–1</sup> rates. Soil pH dropped by 0.039 per kilogram increase in residual inorganic N. Optimizing N rate that minimizes residual inorganic N can reduce soil acidification.</p>","PeriodicalId":48502,"journal":{"name":"Agricultural & Environmental Letters","volume":"6 2","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2021-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/ael2.20048","citationCount":"3","resultStr":"{\"title\":\"Soil acidification in a continuous cotton production system\",\"authors\":\"Rajan Ghimire, Megha N. Parajulee, Pramod Acharya, Dol P. Dhakal, Abdul Hakeem, Katie L. Lewis\",\"doi\":\"10.1002/ael2.20048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Effects of nitrogen (N) fertilization on soil organic carbon (SOC) and total N are well established, but their effects on soil acidification and emerging soil health indicators such as labile N and carbon (C) pools are not adequately documented. This research evaluated soil N and C pools and soil pH with long-term N management in continuous cotton (<i>Gossypium hirsutum</i> L.) production. Residual soil inorganic N, potentially mineralizable N and C, total N, SOC, pH, and electrical conductivity were measured after 17 yr of continuous N application. Comparison of five N rates (0, 56, 112, 168, and 224 kg ha<sup>–1</sup>) showed an increase in residual inorganic N pools and decrease in pH with an increase in N application rate, while other parameters did not change significantly. Soil acidification was significant with 168 and 224 kg N ha<sup>–1</sup> rates. Soil pH dropped by 0.039 per kilogram increase in residual inorganic N. Optimizing N rate that minimizes residual inorganic N can reduce soil acidification.</p>\",\"PeriodicalId\":48502,\"journal\":{\"name\":\"Agricultural & Environmental Letters\",\"volume\":\"6 2\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2021-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/ael2.20048\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agricultural & Environmental Letters\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ael2.20048\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural & Environmental Letters","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ael2.20048","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
摘要
氮肥对土壤有机碳(SOC)和全氮(total N)的影响已经确定,但其对土壤酸化和新兴土壤健康指标(如稳定氮和碳库)的影响还没有充分的文献记录。本研究评价了棉花连续生产长期施氮条件下土壤氮、碳库和土壤pH值。连续施氮17年后,测定了土壤残余无机氮、潜在矿化氮和碳、全氮、有机碳、pH和电导率。不同施氮量(0、56、112、168和224 kg hm - 1)下,随着施氮量的增加,剩余无机氮库增加,pH降低,其他参数变化不显著。施氮量为168和224 kg时,土壤酸化显著。剩余无机氮每增加1 kg,土壤pH值下降0.039;优化施氮量,使剩余无机氮最小化,可减少土壤酸化。
Soil acidification in a continuous cotton production system
Effects of nitrogen (N) fertilization on soil organic carbon (SOC) and total N are well established, but their effects on soil acidification and emerging soil health indicators such as labile N and carbon (C) pools are not adequately documented. This research evaluated soil N and C pools and soil pH with long-term N management in continuous cotton (Gossypium hirsutum L.) production. Residual soil inorganic N, potentially mineralizable N and C, total N, SOC, pH, and electrical conductivity were measured after 17 yr of continuous N application. Comparison of five N rates (0, 56, 112, 168, and 224 kg ha–1) showed an increase in residual inorganic N pools and decrease in pH with an increase in N application rate, while other parameters did not change significantly. Soil acidification was significant with 168 and 224 kg N ha–1 rates. Soil pH dropped by 0.039 per kilogram increase in residual inorganic N. Optimizing N rate that minimizes residual inorganic N can reduce soil acidification.