用于室内无线通信的低成本薄膜贴片天线和各种背景墙材料的天线阵列

IF 2.8 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Juho Kerminen, Boxuan Xie, Lauri Mela, A. Karakoç, K. Ruttik, R. Jäntti
{"title":"用于室内无线通信的低成本薄膜贴片天线和各种背景墙材料的天线阵列","authors":"Juho Kerminen, Boxuan Xie, Lauri Mela, A. Karakoç, K. Ruttik, R. Jäntti","doi":"10.1088/2058-8585/accd05","DOIUrl":null,"url":null,"abstract":"The present study introduces an inkjet-printed flexible coplanar waveguide patch antenna array concept. Single antenna and four-element antenna arrays were characterized, which were attached to a subminiature version A connector via an innovative solderless, 3D-printed ‘plug-and-play-type’ tightener. Furthermore, indoor wireless communication and Internet of Things scenarios with commonly used wall materials including gypsum and plywood boards, on which patch antennas and antenna arrays can be attached, were also presented. In order to validate the concept, design and fabrication iterations in parallel with numerical and experimental investigations were executed. To elaborate, single antenna and antenna array configurations without and with wall materials were characterized to see their functionality at 2.4 GHz resonance frequency and beyond 300 MHz bandwidth, respectively. The results demonstrate that the investigated configurations fulfill short-range radio transmission and can be utilized, e.g., for indoor backscattering-type communications and wireless sensing applications, as an affordable and versatile alternative to their conventional counterparts. Being attached to their corresponding background materials, single-antenna specimens were measured to have return losses beyond 18 dB and peak gains around 1 dBi, while higher peak gains above 6 dBi were detected for antenna arrays. Moreover, the antenna arrays can enable multiple-input and multiple-output communication. The proposed arrays had diversity performance in terms of return losses higher than 15 dB, isolation of more than 20 dB, envelope correlation coefficient <0.001 , diversity gain >9.95 dB, mean effective gain <−3 dB, power ratio factor <0.5 dB, and channel capacity loss <0.4 bits/s/Hz.","PeriodicalId":51335,"journal":{"name":"Flexible and Printed Electronics","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Low-cost thin film patch antennas and antenna arrays with various background wall materials for indoor wireless communications\",\"authors\":\"Juho Kerminen, Boxuan Xie, Lauri Mela, A. Karakoç, K. Ruttik, R. Jäntti\",\"doi\":\"10.1088/2058-8585/accd05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present study introduces an inkjet-printed flexible coplanar waveguide patch antenna array concept. Single antenna and four-element antenna arrays were characterized, which were attached to a subminiature version A connector via an innovative solderless, 3D-printed ‘plug-and-play-type’ tightener. Furthermore, indoor wireless communication and Internet of Things scenarios with commonly used wall materials including gypsum and plywood boards, on which patch antennas and antenna arrays can be attached, were also presented. In order to validate the concept, design and fabrication iterations in parallel with numerical and experimental investigations were executed. To elaborate, single antenna and antenna array configurations without and with wall materials were characterized to see their functionality at 2.4 GHz resonance frequency and beyond 300 MHz bandwidth, respectively. The results demonstrate that the investigated configurations fulfill short-range radio transmission and can be utilized, e.g., for indoor backscattering-type communications and wireless sensing applications, as an affordable and versatile alternative to their conventional counterparts. Being attached to their corresponding background materials, single-antenna specimens were measured to have return losses beyond 18 dB and peak gains around 1 dBi, while higher peak gains above 6 dBi were detected for antenna arrays. Moreover, the antenna arrays can enable multiple-input and multiple-output communication. The proposed arrays had diversity performance in terms of return losses higher than 15 dB, isolation of more than 20 dB, envelope correlation coefficient <0.001 , diversity gain >9.95 dB, mean effective gain <−3 dB, power ratio factor <0.5 dB, and channel capacity loss <0.4 bits/s/Hz.\",\"PeriodicalId\":51335,\"journal\":{\"name\":\"Flexible and Printed Electronics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Flexible and Printed Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-8585/accd05\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flexible and Printed Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2058-8585/accd05","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

摘要

本研究介绍了一种喷墨印刷柔性共面波导贴片天线阵列的概念。对单天线和四元天线阵列进行了表征,它们通过创新的无焊3D打印“即插即用型”紧固器连接到超小型a型连接器上。此外,还介绍了室内无线通信和物联网场景,包括石膏和胶合板等常用墙体材料,其上可以连接贴片天线和天线阵列。为了验证这一概念,在进行数值和实验研究的同时,进行了设计和制造迭代。为了详细说明,对无壁材料和有壁材料的单天线和天线阵列配置进行了表征,以分别在2.4GHz谐振频率和超过300MHz带宽时观察其功能。结果表明,所研究的配置实现了短距离无线电传输,并可用于室内反向散射型通信和无线传感应用,作为传统配置的一种负担得起且通用的替代方案。附着在相应的背景材料上,测量到单个天线样本的回波损耗超过18dB,峰值增益约为1dBi,而天线阵列的峰值增益高于6dBi。此外,天线阵列可以实现多输入和多输出通信。所提出的阵列在回波损耗大于15dB、隔离度大于20dB、包络相关系数9.95dB、平均有效增益<-3dB、功率比因子<0.5dB和信道容量损耗<0.4bits/s/Hz方面具有分集性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-cost thin film patch antennas and antenna arrays with various background wall materials for indoor wireless communications
The present study introduces an inkjet-printed flexible coplanar waveguide patch antenna array concept. Single antenna and four-element antenna arrays were characterized, which were attached to a subminiature version A connector via an innovative solderless, 3D-printed ‘plug-and-play-type’ tightener. Furthermore, indoor wireless communication and Internet of Things scenarios with commonly used wall materials including gypsum and plywood boards, on which patch antennas and antenna arrays can be attached, were also presented. In order to validate the concept, design and fabrication iterations in parallel with numerical and experimental investigations were executed. To elaborate, single antenna and antenna array configurations without and with wall materials were characterized to see their functionality at 2.4 GHz resonance frequency and beyond 300 MHz bandwidth, respectively. The results demonstrate that the investigated configurations fulfill short-range radio transmission and can be utilized, e.g., for indoor backscattering-type communications and wireless sensing applications, as an affordable and versatile alternative to their conventional counterparts. Being attached to their corresponding background materials, single-antenna specimens were measured to have return losses beyond 18 dB and peak gains around 1 dBi, while higher peak gains above 6 dBi were detected for antenna arrays. Moreover, the antenna arrays can enable multiple-input and multiple-output communication. The proposed arrays had diversity performance in terms of return losses higher than 15 dB, isolation of more than 20 dB, envelope correlation coefficient <0.001 , diversity gain >9.95 dB, mean effective gain <−3 dB, power ratio factor <0.5 dB, and channel capacity loss <0.4 bits/s/Hz.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Flexible and Printed Electronics
Flexible and Printed Electronics MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
4.80
自引率
9.70%
发文量
101
期刊介绍: Flexible and Printed Electronics is a multidisciplinary journal publishing cutting edge research articles on electronics that can be either flexible, plastic, stretchable, conformable or printed. Research related to electronic materials, manufacturing techniques, components or systems which meets any one (or more) of the above criteria is suitable for publication in the journal. Subjects included in the journal range from flexible materials and printing techniques, design or modelling of electrical systems and components, advanced fabrication methods and bioelectronics, to the properties of devices and end user applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信