栀子叶绿体全基因组的比较分析及其在系统发育和适应进化中的贡献

IF 1.2 4区 农林科学 Q3 HORTICULTURE
Shoufu Gong, Bailing Miao, Xiangxiang Dong
{"title":"栀子叶绿体全基因组的比较分析及其在系统发育和适应进化中的贡献","authors":"Shoufu Gong, Bailing Miao, Xiangxiang Dong","doi":"10.21273/jashs05225-22","DOIUrl":null,"url":null,"abstract":"Gardenia jasminoides, belonging to the Rubiaceae family, is widely distributed and planted in China. It has traditionally been used as an ornamental and medicinal plant in several Asian countries. The rapid development of high-throughput sequencing technology makes it feasible to obtain complete chloroplast (cp) genome sequences and will deepen our understanding of evolution of G. jasminoides. In this study, we sequenced the complete cp genomes of two botanical varieties of G. jasminoides. The complete cp genomes of both botanical varieties of G. jasminoides showed highly conserved structures and the length was 154,954 base pairs (bp) for G. jasminoides var. radicans (GJR) and 155,098 bp for G. jasminoides var. grandiflora (GJG). A total of 132 and 133 genes were identified in GJR and GJG, respectively. The cp genomes of two newly sequenced G. jasminoides were further compared with two published G. jasminoides cp genomes. Multiple repeats and simple sequence repeats (SSRs) were detected among different genotypes of G. jasminoides. The intron sequences of rps16 and rpl16 genes were slightly divergent among four genotypes of G. jasminoides. Phylogenetic analyses based on the complete cp genome sequences showed that G. jasminoides was closely associated with Fosbergia shweliensis, with Coffea as their close relative. Taken together, the complete cp genomes of GJG and GJR provided significant insights and important information that can be used to identify related species and reconstruct their phylogeny.","PeriodicalId":17226,"journal":{"name":"Journal of the American Society for Horticultural Science","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Analysis of Complete Chloroplast Genomes of Gardenia jasminoides and Contribution to the Phylogeny and Adaptive Evolution\",\"authors\":\"Shoufu Gong, Bailing Miao, Xiangxiang Dong\",\"doi\":\"10.21273/jashs05225-22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gardenia jasminoides, belonging to the Rubiaceae family, is widely distributed and planted in China. It has traditionally been used as an ornamental and medicinal plant in several Asian countries. The rapid development of high-throughput sequencing technology makes it feasible to obtain complete chloroplast (cp) genome sequences and will deepen our understanding of evolution of G. jasminoides. In this study, we sequenced the complete cp genomes of two botanical varieties of G. jasminoides. The complete cp genomes of both botanical varieties of G. jasminoides showed highly conserved structures and the length was 154,954 base pairs (bp) for G. jasminoides var. radicans (GJR) and 155,098 bp for G. jasminoides var. grandiflora (GJG). A total of 132 and 133 genes were identified in GJR and GJG, respectively. The cp genomes of two newly sequenced G. jasminoides were further compared with two published G. jasminoides cp genomes. Multiple repeats and simple sequence repeats (SSRs) were detected among different genotypes of G. jasminoides. The intron sequences of rps16 and rpl16 genes were slightly divergent among four genotypes of G. jasminoides. Phylogenetic analyses based on the complete cp genome sequences showed that G. jasminoides was closely associated with Fosbergia shweliensis, with Coffea as their close relative. Taken together, the complete cp genomes of GJG and GJR provided significant insights and important information that can be used to identify related species and reconstruct their phylogeny.\",\"PeriodicalId\":17226,\"journal\":{\"name\":\"Journal of the American Society for Horticultural Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Society for Horticultural Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.21273/jashs05225-22\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Horticultural Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.21273/jashs05225-22","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0

摘要

栀子属茜草科,在我国广泛分布和种植。在一些亚洲国家,它传统上被用作观赏植物和药用植物。高通量测序技术的快速发展使获得完整的叶绿体(cp)基因组序列成为可能,并将加深我们对茉莉花进化的理解。在本研究中,我们对两个茉莉属植物品种的完整cp基因组进行了测序。两个茉莉属植物品种的完整cp基因组显示出高度保守的结构,其长度分别为154954个碱基对(bp)(根型茉莉)和155098bp(大花型茉莉)。在GJR和GJG中分别鉴定出132和133个基因。将两个新测序的茉莉花的cp基因组与两个已发表的茉莉花cp基因组进行了进一步的比较。在不同基因型的茉莉中检测到多个重复序列和简单序列重复序列。在四种茉莉花基因型中,rps16和rpl16基因的内含子序列略有差异。基于完整cp基因组序列的系统发育分析表明,jasminoides与什韦里Fosbergia shweliensis亲缘关系密切,Coffea是它们的近亲。总之,GJG和GJR的完整cp基因组提供了重要的见解和信息,可用于识别相关物种并重建其系统发育。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative Analysis of Complete Chloroplast Genomes of Gardenia jasminoides and Contribution to the Phylogeny and Adaptive Evolution
Gardenia jasminoides, belonging to the Rubiaceae family, is widely distributed and planted in China. It has traditionally been used as an ornamental and medicinal plant in several Asian countries. The rapid development of high-throughput sequencing technology makes it feasible to obtain complete chloroplast (cp) genome sequences and will deepen our understanding of evolution of G. jasminoides. In this study, we sequenced the complete cp genomes of two botanical varieties of G. jasminoides. The complete cp genomes of both botanical varieties of G. jasminoides showed highly conserved structures and the length was 154,954 base pairs (bp) for G. jasminoides var. radicans (GJR) and 155,098 bp for G. jasminoides var. grandiflora (GJG). A total of 132 and 133 genes were identified in GJR and GJG, respectively. The cp genomes of two newly sequenced G. jasminoides were further compared with two published G. jasminoides cp genomes. Multiple repeats and simple sequence repeats (SSRs) were detected among different genotypes of G. jasminoides. The intron sequences of rps16 and rpl16 genes were slightly divergent among four genotypes of G. jasminoides. Phylogenetic analyses based on the complete cp genome sequences showed that G. jasminoides was closely associated with Fosbergia shweliensis, with Coffea as their close relative. Taken together, the complete cp genomes of GJG and GJR provided significant insights and important information that can be used to identify related species and reconstruct their phylogeny.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
31
审稿时长
2 months
期刊介绍: The Journal of the American Society for Horticultural Science publishes papers on the results of original research on horticultural plants and their products or directly related research areas. Its prime function is to communicate mission-oriented, fundamental research to other researchers. The journal includes detailed reports of original research results on various aspects of horticultural science and directly related subjects such as: - Biotechnology - Developmental Physiology - Environmental Stress Physiology - Genetics and Breeding - Photosynthesis, Sources-Sink Physiology - Postharvest Biology - Seed Physiology - Postharvest Biology - Seed Physiology - Soil-Plant-Water Relationships - Statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信