基于三重态-三重态湮灭作为化学转化光敏剂的光子上转换系统

IF 8.6 2区 化学 Q1 Chemistry
Raúl Pérez-Ruiz
{"title":"基于三重态-三重态湮灭作为化学转化光敏剂的光子上转换系统","authors":"Raúl Pérez-Ruiz","doi":"10.1007/s41061-022-00378-6","DOIUrl":null,"url":null,"abstract":"<div><p>Photon upconversion (UC) based on triplet–triplet annihilation (TTA) is considered one of the most attractive methodologies for switching wavelengths from lower to higher energy. This two-photon process, which requires the involvement of a bimolecular system, has been widely used in numerous fields such as bioimaging, solar cells, displays, drug delivery, and so on. In the last years, we have witnessed the harnessing of this concept by the organic community who have developed new strategies for synthetic purposes. Interestingly, the generation of high-energetic species by this phenomenon has provided the opportunity not only to photoredox activate compounds with high-energy demanding bonds, expanding the reactivity window that lies outside the energy window of the initial irradiation wavelength, but also to sensitized conventional photocatalysts through energy transfer processes even employing infrared irradiation. Herein, an overview of the principal examples found in literature is described where TTA–UC systems are found to be suitable photosensitizers for several chemical transformations.</p></div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":null,"pages":null},"PeriodicalIF":8.6000,"publicationDate":"2022-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Photon Upconversion Systems Based on Triplet–Triplet Annihilation as Photosensitizers for Chemical Transformations\",\"authors\":\"Raúl Pérez-Ruiz\",\"doi\":\"10.1007/s41061-022-00378-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Photon upconversion (UC) based on triplet–triplet annihilation (TTA) is considered one of the most attractive methodologies for switching wavelengths from lower to higher energy. This two-photon process, which requires the involvement of a bimolecular system, has been widely used in numerous fields such as bioimaging, solar cells, displays, drug delivery, and so on. In the last years, we have witnessed the harnessing of this concept by the organic community who have developed new strategies for synthetic purposes. Interestingly, the generation of high-energetic species by this phenomenon has provided the opportunity not only to photoredox activate compounds with high-energy demanding bonds, expanding the reactivity window that lies outside the energy window of the initial irradiation wavelength, but also to sensitized conventional photocatalysts through energy transfer processes even employing infrared irradiation. Herein, an overview of the principal examples found in literature is described where TTA–UC systems are found to be suitable photosensitizers for several chemical transformations.</p></div>\",\"PeriodicalId\":802,\"journal\":{\"name\":\"Topics in Current Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2022-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topics in Current Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41061-022-00378-6\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Current Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s41061-022-00378-6","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 7

摘要

基于三重态-三重态湮灭(TTA)的光子上转换(UC)被认为是将波长从低能量转换到高能量的最有吸引力的方法之一。这种双光子过程需要双分子系统的参与,已广泛应用于生物成像、太阳能电池、显示器、药物输送等众多领域。在过去的几年里,我们目睹了有机社区对这一概念的利用,他们为合成目的开发了新的战略。有趣的是,通过这种现象产生的高能量物质不仅提供了光氧化还原激活具有高能量要求键的化合物的机会,扩大了初始照射波长能量窗口之外的反应性窗口,而且还通过能量转移过程敏化了传统的光催化剂,甚至使用红外照射。在这里,概述了文献中发现的主要例子,其中TTA-UC系统被发现是适合几种化学转化的光敏剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Photon Upconversion Systems Based on Triplet–Triplet Annihilation as Photosensitizers for Chemical Transformations

Photon upconversion (UC) based on triplet–triplet annihilation (TTA) is considered one of the most attractive methodologies for switching wavelengths from lower to higher energy. This two-photon process, which requires the involvement of a bimolecular system, has been widely used in numerous fields such as bioimaging, solar cells, displays, drug delivery, and so on. In the last years, we have witnessed the harnessing of this concept by the organic community who have developed new strategies for synthetic purposes. Interestingly, the generation of high-energetic species by this phenomenon has provided the opportunity not only to photoredox activate compounds with high-energy demanding bonds, expanding the reactivity window that lies outside the energy window of the initial irradiation wavelength, but also to sensitized conventional photocatalysts through energy transfer processes even employing infrared irradiation. Herein, an overview of the principal examples found in literature is described where TTA–UC systems are found to be suitable photosensitizers for several chemical transformations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Topics in Current Chemistry
Topics in Current Chemistry 化学-化学综合
CiteScore
11.70
自引率
1.20%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Topics in Current Chemistry provides in-depth analyses and forward-thinking perspectives on the latest advancements in chemical research. This renowned journal encompasses various domains within chemical science and their intersections with biology, medicine, physics, and materials science. Each collection within the journal aims to offer a comprehensive understanding, accessible to both academic and industrial readers, of emerging research in an area that captivates a broader scientific community. In essence, Topics in Current Chemistry illuminates cutting-edge chemical research, fosters interdisciplinary collaboration, and facilitates knowledge-sharing among diverse scientific audiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信