基于高斯过程的模型预测控制的零阶优化

IF 2.5 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Amon Lahr, Andrea Zanelli, Andrea Carron, Melanie N. Zeilinger
{"title":"基于高斯过程的模型预测控制的零阶优化","authors":"Amon Lahr,&nbsp;Andrea Zanelli,&nbsp;Andrea Carron,&nbsp;Melanie N. Zeilinger","doi":"10.1016/j.ejcon.2023.100862","DOIUrl":null,"url":null,"abstract":"<div><p>By enabling constraint-aware online model adaptation, model predictive control using Gaussian process (GP) regression has exhibited impressive performance in real-world applications and received considerable attention in the learning-based control community. Yet, solving the resulting optimal control problem in real-time generally remains a major challenge, due to (i) the increased number of augmented states in the optimization problem, as well as (ii) computationally expensive evaluations of the posterior mean and covariance and their respective derivatives. To tackle these challenges, we employ (i) a tailored Jacobian approximation in a sequential quadratic programming (SQP) approach and combine it with (ii) a parallelizable GP inference and automatic differentiation framework. Reducing the numerical complexity with respect to the state dimension <span><math><msub><mi>n</mi><mi>x</mi></msub></math></span> for each SQP iteration from <span><math><mrow><mi>O</mi><mo>(</mo><msubsup><mi>n</mi><mi>x</mi><mn>6</mn></msubsup><mo>)</mo></mrow></math></span> to <span><math><mrow><mi>O</mi><mo>(</mo><msubsup><mi>n</mi><mi>x</mi><mn>3</mn></msubsup><mo>)</mo></mrow></math></span>, and accelerating GP evaluations on a graphical processing unit, the proposed algorithm computes suboptimal, yet feasible, solutions at drastically reduced computation times and exhibits favorable local convergence properties. Numerical experiments verify the scaling properties and investigate the runtime distribution across different parts of the algorithm.</p></div>","PeriodicalId":50489,"journal":{"name":"European Journal of Control","volume":"74 ","pages":"Article 100862"},"PeriodicalIF":2.5000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0947358023000912/pdfft?md5=9dd7d9ddc254ef0cea7eea581f86ab23&pid=1-s2.0-S0947358023000912-main.pdf","citationCount":"1","resultStr":"{\"title\":\"Zero-order optimization for Gaussian process-based model predictive control\",\"authors\":\"Amon Lahr,&nbsp;Andrea Zanelli,&nbsp;Andrea Carron,&nbsp;Melanie N. Zeilinger\",\"doi\":\"10.1016/j.ejcon.2023.100862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>By enabling constraint-aware online model adaptation, model predictive control using Gaussian process (GP) regression has exhibited impressive performance in real-world applications and received considerable attention in the learning-based control community. Yet, solving the resulting optimal control problem in real-time generally remains a major challenge, due to (i) the increased number of augmented states in the optimization problem, as well as (ii) computationally expensive evaluations of the posterior mean and covariance and their respective derivatives. To tackle these challenges, we employ (i) a tailored Jacobian approximation in a sequential quadratic programming (SQP) approach and combine it with (ii) a parallelizable GP inference and automatic differentiation framework. Reducing the numerical complexity with respect to the state dimension <span><math><msub><mi>n</mi><mi>x</mi></msub></math></span> for each SQP iteration from <span><math><mrow><mi>O</mi><mo>(</mo><msubsup><mi>n</mi><mi>x</mi><mn>6</mn></msubsup><mo>)</mo></mrow></math></span> to <span><math><mrow><mi>O</mi><mo>(</mo><msubsup><mi>n</mi><mi>x</mi><mn>3</mn></msubsup><mo>)</mo></mrow></math></span>, and accelerating GP evaluations on a graphical processing unit, the proposed algorithm computes suboptimal, yet feasible, solutions at drastically reduced computation times and exhibits favorable local convergence properties. Numerical experiments verify the scaling properties and investigate the runtime distribution across different parts of the algorithm.</p></div>\",\"PeriodicalId\":50489,\"journal\":{\"name\":\"European Journal of Control\",\"volume\":\"74 \",\"pages\":\"Article 100862\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0947358023000912/pdfft?md5=9dd7d9ddc254ef0cea7eea581f86ab23&pid=1-s2.0-S0947358023000912-main.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0947358023000912\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0947358023000912","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

通过启用约束感知在线模型自适应,使用高斯过程(GP)回归的模型预测控制在实际应用中表现出令人印象深刻的性能,并在基于学习的控制社区中受到相当大的关注。然而,实时解决由此产生的最优控制问题通常仍然是一个主要挑战,因为(i)优化问题中增强状态的数量增加,以及(ii)后验均值和协方差及其各自导数的计算代价高昂。为了解决这些挑战,我们采用(i)在顺序二次规划(SQP)方法中定制的雅可比逼近,并将其与(ii)可并行化的GP推理和自动微分框架相结合。从0 (nx6)到O(nx3)的每个SQP迭代降低了相对于状态维nx的数值复杂性,并加速了图形处理单元上的GP评估,该算法在大大减少的计算时间内计算出次优但可行的解决方案,并表现出良好的局部收敛性。数值实验验证了该算法的缩放特性,并研究了算法在不同部分之间的运行时间分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Zero-order optimization for Gaussian process-based model predictive control

By enabling constraint-aware online model adaptation, model predictive control using Gaussian process (GP) regression has exhibited impressive performance in real-world applications and received considerable attention in the learning-based control community. Yet, solving the resulting optimal control problem in real-time generally remains a major challenge, due to (i) the increased number of augmented states in the optimization problem, as well as (ii) computationally expensive evaluations of the posterior mean and covariance and their respective derivatives. To tackle these challenges, we employ (i) a tailored Jacobian approximation in a sequential quadratic programming (SQP) approach and combine it with (ii) a parallelizable GP inference and automatic differentiation framework. Reducing the numerical complexity with respect to the state dimension nx for each SQP iteration from O(nx6) to O(nx3), and accelerating GP evaluations on a graphical processing unit, the proposed algorithm computes suboptimal, yet feasible, solutions at drastically reduced computation times and exhibits favorable local convergence properties. Numerical experiments verify the scaling properties and investigate the runtime distribution across different parts of the algorithm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Journal of Control
European Journal of Control 工程技术-自动化与控制系统
CiteScore
5.80
自引率
5.90%
发文量
131
审稿时长
1 months
期刊介绍: The European Control Association (EUCA) has among its objectives to promote the development of the discipline. Apart from the European Control Conferences, the European Journal of Control is the Association''s main channel for the dissemination of important contributions in the field. The aim of the Journal is to publish high quality papers on the theory and practice of control and systems engineering. The scope of the Journal will be wide and cover all aspects of the discipline including methodologies, techniques and applications. Research in control and systems engineering is necessary to develop new concepts and tools which enhance our understanding and improve our ability to design and implement high performance control systems. Submitted papers should stress the practical motivations and relevance of their results. The design and implementation of a successful control system requires the use of a range of techniques: Modelling Robustness Analysis Identification Optimization Control Law Design Numerical analysis Fault Detection, and so on.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信