Tetraspanin CD9肽对铜绿假单胞菌的抗菌作用

IF 0.7 Q4 MICROBIOLOGY
Khairiyah Murad, S. Ab-Rahim, H. Al-Talib
{"title":"Tetraspanin CD9肽对铜绿假单胞菌的抗菌作用","authors":"Khairiyah Murad, S. Ab-Rahim, H. Al-Talib","doi":"10.22207/jpam.17.3.41","DOIUrl":null,"url":null,"abstract":"It is critical to find an alternative therapeutic approach to combat Pseudomonas aeruginosa (P. aeruginosa) that can simultaneously reduce the occurrence of bacterial resistance. The tetraspanin CD9, a highly expressed membrane protein in melanocytes was chosen for this study because it is highly expressed in keratinocytes and has been implicated in the pathogenesis of bacterial infections in a previous study. The antimicrobial activity of CD9 peptides against the standard strain P. aeruginosa (ATCC 27853) and a clinical multidrug-resistant P. aeruginosa (MDR- P. aeruginosa) was studied using the disc diffusion method. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of CD9 peptides were determined by broth microdilution assays with concentrations ranging from 1 mg/mL to 4.88×10-4 mg/mL. The antibiofilm activity of the CD9 peptides was also determined. CD9 peptides showed an 11.75 ± 2.36 mm inhibition zone against the standard P. aeruginosa strain but none against the MDR- P. aeruginosa. Both isolates had the same MIC value, 0.25 mg/mL. The MBC for the standard strain P. aeruginosa was 0.5 mg/mL, while for the MDR- P. aeruginosa strain, it was 1 mg/mL. CD9 peptides significantly inhibited up to 70% biofilm against both P. aeruginosa isolates. CD9 peptides showed a modest inhibitory effect against the standard strain P. aeruginosa but not against MDR- P. aeruginosa. Interestingly, CD9 peptides were found to be a good anti-biofilm treatment against both P. aeruginosa isolates. This study demonstrated that CD9 peptides have the potential to be an alternative antimicrobial treatment against P. aeruginosa.","PeriodicalId":16968,"journal":{"name":"Journal of Pure and Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Antimicrobial effect of Tetraspanin CD9 Peptides on Pseudomonas aeruginosa\",\"authors\":\"Khairiyah Murad, S. Ab-Rahim, H. Al-Talib\",\"doi\":\"10.22207/jpam.17.3.41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is critical to find an alternative therapeutic approach to combat Pseudomonas aeruginosa (P. aeruginosa) that can simultaneously reduce the occurrence of bacterial resistance. The tetraspanin CD9, a highly expressed membrane protein in melanocytes was chosen for this study because it is highly expressed in keratinocytes and has been implicated in the pathogenesis of bacterial infections in a previous study. The antimicrobial activity of CD9 peptides against the standard strain P. aeruginosa (ATCC 27853) and a clinical multidrug-resistant P. aeruginosa (MDR- P. aeruginosa) was studied using the disc diffusion method. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of CD9 peptides were determined by broth microdilution assays with concentrations ranging from 1 mg/mL to 4.88×10-4 mg/mL. The antibiofilm activity of the CD9 peptides was also determined. CD9 peptides showed an 11.75 ± 2.36 mm inhibition zone against the standard P. aeruginosa strain but none against the MDR- P. aeruginosa. Both isolates had the same MIC value, 0.25 mg/mL. The MBC for the standard strain P. aeruginosa was 0.5 mg/mL, while for the MDR- P. aeruginosa strain, it was 1 mg/mL. CD9 peptides significantly inhibited up to 70% biofilm against both P. aeruginosa isolates. CD9 peptides showed a modest inhibitory effect against the standard strain P. aeruginosa but not against MDR- P. aeruginosa. Interestingly, CD9 peptides were found to be a good anti-biofilm treatment against both P. aeruginosa isolates. This study demonstrated that CD9 peptides have the potential to be an alternative antimicrobial treatment against P. aeruginosa.\",\"PeriodicalId\":16968,\"journal\":{\"name\":\"Journal of Pure and Applied Microbiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Microbiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22207/jpam.17.3.41\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22207/jpam.17.3.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

关键是找到一种替代治疗方法来对抗铜绿假单胞菌(P. aeruginosa),同时可以减少细菌耐药性的发生。本研究选择了在黑素细胞中高度表达的膜蛋白tetraspanin CD9,因为它在角质形成细胞中高度表达,并且在先前的研究中与细菌感染的发病机制有关。采用圆盘扩散法研究了CD9肽对标准菌株ATCC 27853和临床耐多药铜绿假单胞菌(MDR- P. aeruginosa)的抑菌活性。采用肉汤微量稀释法测定CD9肽的最低抑菌浓度(MIC)和最低杀菌浓度(MBC),浓度范围为1 mg/mL ~ 4.88×10-4 mg/mL。测定了CD9肽的抗膜活性。CD9肽对标准铜绿假单胞菌的抑制范围为11.75±2.36 mm,而对MDR-铜绿假单胞菌的抑制范围为零。两个分离株的MIC值相同,均为0.25 mg/mL。标准菌株的MBC为0.5 mg/mL, MDR- P. aeruginosa菌株的MBC为1 mg/mL。CD9肽显著抑制高达70%的生物膜对铜绿假单胞菌分离物。CD9肽对标准菌株铜绿假单胞菌表现出适度的抑制作用,但对MDR-铜绿假单胞菌没有抑制作用。有趣的是,CD9肽被发现是一种很好的抗铜绿假单胞菌分离物的生物膜治疗方法。该研究表明,CD9肽有可能成为铜绿假单胞菌的替代抗菌治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Antimicrobial effect of Tetraspanin CD9 Peptides on Pseudomonas aeruginosa
It is critical to find an alternative therapeutic approach to combat Pseudomonas aeruginosa (P. aeruginosa) that can simultaneously reduce the occurrence of bacterial resistance. The tetraspanin CD9, a highly expressed membrane protein in melanocytes was chosen for this study because it is highly expressed in keratinocytes and has been implicated in the pathogenesis of bacterial infections in a previous study. The antimicrobial activity of CD9 peptides against the standard strain P. aeruginosa (ATCC 27853) and a clinical multidrug-resistant P. aeruginosa (MDR- P. aeruginosa) was studied using the disc diffusion method. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of CD9 peptides were determined by broth microdilution assays with concentrations ranging from 1 mg/mL to 4.88×10-4 mg/mL. The antibiofilm activity of the CD9 peptides was also determined. CD9 peptides showed an 11.75 ± 2.36 mm inhibition zone against the standard P. aeruginosa strain but none against the MDR- P. aeruginosa. Both isolates had the same MIC value, 0.25 mg/mL. The MBC for the standard strain P. aeruginosa was 0.5 mg/mL, while for the MDR- P. aeruginosa strain, it was 1 mg/mL. CD9 peptides significantly inhibited up to 70% biofilm against both P. aeruginosa isolates. CD9 peptides showed a modest inhibitory effect against the standard strain P. aeruginosa but not against MDR- P. aeruginosa. Interestingly, CD9 peptides were found to be a good anti-biofilm treatment against both P. aeruginosa isolates. This study demonstrated that CD9 peptides have the potential to be an alternative antimicrobial treatment against P. aeruginosa.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Pure and Applied Microbiology
Journal of Pure and Applied Microbiology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-MICROBIOLOGY
CiteScore
2.00
自引率
0.00%
发文量
266
审稿时长
11 months
期刊介绍: Journal of Pure and Applied Microbiology (JPAM) is a peer-reviewed, open access international journal of microbiology aims to advance and disseminate research among scientists, academics, clinicians and microbiologists around the world. JPAM publishes high-quality research in all aspects of microbiology in both online and print form on quarterly basis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信