风车与桥梁耦合作用下的桥梁结构动力学

IF 1.5 Q3 MECHANICS
Guoqing Huang, Na Ren, Hengbin Zheng
{"title":"风车与桥梁耦合作用下的桥梁结构动力学","authors":"Guoqing Huang, Na Ren, Hengbin Zheng","doi":"10.13052/ejcm2642-2085.31563","DOIUrl":null,"url":null,"abstract":"To analyze the coupled dynamics effects of existing railroad frame bridge structures under the action of traffic, a coupled train-ballast track-suspension bridge girder-soil dynamics model is established based on railroad large system dynamics and finite element theory. The joint ABAQUS-MATLAB simulation, time-varying coupling, and multi-step dynamic iterative solution strategies are introduced to numerically simulate the mechanical properties of existing railroad structures under the coupled effects of wind loads and traffic action. Specifically, (1) a dichotomous method is proposed to investigate the static behavior of the bridge in the bridge-forming state, and the maximum upper arch of the stiffened girder is 3.67 cm, which occurs at about 1/4 and 3/4 positions of the main span, and the lower deflection of the side span is larger, and the maximum lower deflection occurs at 11.04 cm in the span of the 110 m side span. The vertical acceleration in the span increases immediately with the maximum peak of 30 cm/s2, while the lateral acceleration is maintained within 20 cm/s22. (2) The effects of the stiffness of the rail fasteners and the bridge plate support stiffness on the dynamics were studied. (3) The results of the time-domain analysis are in general agreement with the simulation data, except for the error of the ambient vibration background existing at the peak. The correctness of the simulation model is verified.","PeriodicalId":45463,"journal":{"name":"European Journal of Computational Mechanics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Structural Dynamics of Bridges Under the Coupling Effect of Windmills and Bridges\",\"authors\":\"Guoqing Huang, Na Ren, Hengbin Zheng\",\"doi\":\"10.13052/ejcm2642-2085.31563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To analyze the coupled dynamics effects of existing railroad frame bridge structures under the action of traffic, a coupled train-ballast track-suspension bridge girder-soil dynamics model is established based on railroad large system dynamics and finite element theory. The joint ABAQUS-MATLAB simulation, time-varying coupling, and multi-step dynamic iterative solution strategies are introduced to numerically simulate the mechanical properties of existing railroad structures under the coupled effects of wind loads and traffic action. Specifically, (1) a dichotomous method is proposed to investigate the static behavior of the bridge in the bridge-forming state, and the maximum upper arch of the stiffened girder is 3.67 cm, which occurs at about 1/4 and 3/4 positions of the main span, and the lower deflection of the side span is larger, and the maximum lower deflection occurs at 11.04 cm in the span of the 110 m side span. The vertical acceleration in the span increases immediately with the maximum peak of 30 cm/s2, while the lateral acceleration is maintained within 20 cm/s22. (2) The effects of the stiffness of the rail fasteners and the bridge plate support stiffness on the dynamics were studied. (3) The results of the time-domain analysis are in general agreement with the simulation data, except for the error of the ambient vibration background existing at the peak. The correctness of the simulation model is verified.\",\"PeriodicalId\":45463,\"journal\":{\"name\":\"European Journal of Computational Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Computational Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/ejcm2642-2085.31563\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/ejcm2642-2085.31563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1

摘要

为分析既有铁路框架桥梁结构在交通作用下的耦合动力效应,基于铁路大系统动力学和有限元理论,建立了列车-道砟轨道-悬索桥梁-土耦合动力模型。采用ABAQUS-MATLAB联合仿真、时变耦合和多步动态迭代求解策略,对既有铁路结构在风荷载和交通耦合作用下的力学性能进行了数值模拟。具体而言,(1)采用二分类方法研究了桥梁在成桥状态下的静力性能,加劲梁的最大上拱为3.67 cm,发生在主跨的1/4和3/4位置左右,侧跨的下挠度较大,110 m侧跨的最大下挠度发生在11.04 cm。跨内竖向加速度立即增大,最大峰值为30 cm/s2,横向加速度保持在20 cm/s2以内。(2)研究了钢轨扣件刚度和桥板支撑刚度对动力学的影响。(3)时域分析结果除峰值处存在环境振动背景误差外,与仿真数据基本一致。验证了仿真模型的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural Dynamics of Bridges Under the Coupling Effect of Windmills and Bridges
To analyze the coupled dynamics effects of existing railroad frame bridge structures under the action of traffic, a coupled train-ballast track-suspension bridge girder-soil dynamics model is established based on railroad large system dynamics and finite element theory. The joint ABAQUS-MATLAB simulation, time-varying coupling, and multi-step dynamic iterative solution strategies are introduced to numerically simulate the mechanical properties of existing railroad structures under the coupled effects of wind loads and traffic action. Specifically, (1) a dichotomous method is proposed to investigate the static behavior of the bridge in the bridge-forming state, and the maximum upper arch of the stiffened girder is 3.67 cm, which occurs at about 1/4 and 3/4 positions of the main span, and the lower deflection of the side span is larger, and the maximum lower deflection occurs at 11.04 cm in the span of the 110 m side span. The vertical acceleration in the span increases immediately with the maximum peak of 30 cm/s2, while the lateral acceleration is maintained within 20 cm/s22. (2) The effects of the stiffness of the rail fasteners and the bridge plate support stiffness on the dynamics were studied. (3) The results of the time-domain analysis are in general agreement with the simulation data, except for the error of the ambient vibration background existing at the peak. The correctness of the simulation model is verified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
8.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信