Jian Zeng, Min Chen, Minfang Zheng, Wangjiang Hu, Yusheng Qiu
{"title":"在北极楚科奇大陆架含氧水域发现了潜在的氮汇","authors":"Jian Zeng, Min Chen, Minfang Zheng, Wangjiang Hu, Yusheng Qiu","doi":"10.1186/s12932-017-0043-2","DOIUrl":null,"url":null,"abstract":"<p>The western Arctic Shelf has long been considered as an important sink of nitrogen because high primary productivity of the shelf water fuels active denitrification within the sediments, which has been recognized to account for all the nitrogen (N) removal of the Pacific water inflow. However, potentially high denitrifying activity was discovered within the oxygenated Chukchi Shelf water during our summer expedition. Based on <sup>15</sup>N-isotope pairing incubations, we estimated denitrification rates ranging from 1.8?±?0.4 to 75.9?±?8.7?nmol?N<sub>2</sub> L<sup>?1</sup>?h<sup>?1</sup>. We find that the spatial pattern of denitrifying activity follows well with primary productivity, which supplies plentiful fresh organic matter, and there was a strong correlation between integrated denitrification and integrated primary productivity. Considering the active hydrodynamics over the Chukchi Shelf during summer, resuspension of benthic sediment coupled with particle-associated bacteria induces an active denitrification process in the oxic water column. We further extrapolate to the whole Chukchi Shelf and estimate an N removal flux from this cold Arctic shelf water to be 12.2 Tg-N?year<sup>?1</sup>, which compensates for the difference between sediment cores incubation (~?3 Tg-N?year<sup>?1</sup>) and geochemical estimation based on N deficit relative to phosphorous (~?16 Tg-N?year<sup>?1</sup>). We infer that dynamic sediment resuspension combined with high biological productivity stimulates intensive denitrification in the water column, potentially creating a nitrogen sink over the shallow Arctic shelves that have previously been unrecognized.</p>","PeriodicalId":12694,"journal":{"name":"Geochemical Transactions","volume":"18 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2017-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12932-017-0043-2","citationCount":"11","resultStr":"{\"title\":\"A potential nitrogen sink discovered in the oxygenated Chukchi Shelf waters of the Arctic\",\"authors\":\"Jian Zeng, Min Chen, Minfang Zheng, Wangjiang Hu, Yusheng Qiu\",\"doi\":\"10.1186/s12932-017-0043-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The western Arctic Shelf has long been considered as an important sink of nitrogen because high primary productivity of the shelf water fuels active denitrification within the sediments, which has been recognized to account for all the nitrogen (N) removal of the Pacific water inflow. However, potentially high denitrifying activity was discovered within the oxygenated Chukchi Shelf water during our summer expedition. Based on <sup>15</sup>N-isotope pairing incubations, we estimated denitrification rates ranging from 1.8?±?0.4 to 75.9?±?8.7?nmol?N<sub>2</sub> L<sup>?1</sup>?h<sup>?1</sup>. We find that the spatial pattern of denitrifying activity follows well with primary productivity, which supplies plentiful fresh organic matter, and there was a strong correlation between integrated denitrification and integrated primary productivity. Considering the active hydrodynamics over the Chukchi Shelf during summer, resuspension of benthic sediment coupled with particle-associated bacteria induces an active denitrification process in the oxic water column. We further extrapolate to the whole Chukchi Shelf and estimate an N removal flux from this cold Arctic shelf water to be 12.2 Tg-N?year<sup>?1</sup>, which compensates for the difference between sediment cores incubation (~?3 Tg-N?year<sup>?1</sup>) and geochemical estimation based on N deficit relative to phosphorous (~?16 Tg-N?year<sup>?1</sup>). We infer that dynamic sediment resuspension combined with high biological productivity stimulates intensive denitrification in the water column, potentially creating a nitrogen sink over the shallow Arctic shelves that have previously been unrecognized.</p>\",\"PeriodicalId\":12694,\"journal\":{\"name\":\"Geochemical Transactions\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2017-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s12932-017-0043-2\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochemical Transactions\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s12932-017-0043-2\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemical Transactions","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s12932-017-0043-2","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 11
摘要
长期以来,北极西部大陆架一直被认为是一个重要的氮汇,因为大陆架水的高初级生产力为沉积物内的主动反硝化提供了燃料,这被认为是太平洋流入水去除所有氮的原因。然而,在我们夏季考察期间,在楚科奇陆架含氧水中发现了潜在的高反硝化活性。基于15n -同位素配对孵育,我们估计反硝化速率范围为1.8±0.4至75.9±8.7 nmol?N2 L ? 1 h ? 1。研究发现,反硝化活动的空间格局与提供丰富新鲜有机质的初级生产力密切相关,综合反硝化与综合初级生产力之间存在较强的相关性。考虑到楚科奇陆架夏季活跃的水动力,底栖生物沉积物的再悬浮与颗粒相关细菌在氧水柱中诱导了一个活跃的反硝化过程。我们进一步推断整个楚科奇陆架,并估计从这个寒冷的北极陆架水的N去除通量为12.2 Tg-N?年。1、补偿了沉积物岩心孵育(~?3 Tg-N?year?1)和基于相对于磷(~?16 Tg-N ? ? 1)。我们推断,动态沉积物再悬浮与高生物生产力相结合,刺激了水柱中密集的反硝化作用,可能在北极浅层大陆架上形成一个以前未被认识到的氮汇。
A potential nitrogen sink discovered in the oxygenated Chukchi Shelf waters of the Arctic
The western Arctic Shelf has long been considered as an important sink of nitrogen because high primary productivity of the shelf water fuels active denitrification within the sediments, which has been recognized to account for all the nitrogen (N) removal of the Pacific water inflow. However, potentially high denitrifying activity was discovered within the oxygenated Chukchi Shelf water during our summer expedition. Based on 15N-isotope pairing incubations, we estimated denitrification rates ranging from 1.8?±?0.4 to 75.9?±?8.7?nmol?N2 L?1?h?1. We find that the spatial pattern of denitrifying activity follows well with primary productivity, which supplies plentiful fresh organic matter, and there was a strong correlation between integrated denitrification and integrated primary productivity. Considering the active hydrodynamics over the Chukchi Shelf during summer, resuspension of benthic sediment coupled with particle-associated bacteria induces an active denitrification process in the oxic water column. We further extrapolate to the whole Chukchi Shelf and estimate an N removal flux from this cold Arctic shelf water to be 12.2 Tg-N?year?1, which compensates for the difference between sediment cores incubation (~?3 Tg-N?year?1) and geochemical estimation based on N deficit relative to phosphorous (~?16 Tg-N?year?1). We infer that dynamic sediment resuspension combined with high biological productivity stimulates intensive denitrification in the water column, potentially creating a nitrogen sink over the shallow Arctic shelves that have previously been unrecognized.
期刊介绍:
Geochemical Transactions publishes high-quality research in all areas of chemistry as it relates to materials and processes occurring in terrestrial and extraterrestrial systems.