{"title":"多过程状态下基于迁移学习和集成学习的自适应软传感器","authors":"Nobuhito Yamada, Hiromasa Kaneko","doi":"10.1002/ansa.202200013","DOIUrl":null,"url":null,"abstract":"<p>The objective of this study is to develop an adaptive software sensor technique that can predict objective process variables for a target grade in a plant while also considering information related to various other grades. We use a dataset of the target grade as the target domain and those of the other grades as source domains to perform transfer learning. Multiple models or sub-models are constructed by setting a source domain for each grade and changing the number of samples used as the source domain. Furthermore, to prevent the negative transfer, the use of a source domain is automatically judged. In this study, we constructed sub-models using the locally weighted partial least squares approach as an adaptive soft sensor technique. The values of an objective variable were predicted with ensemble learning using sub-models. The effectiveness of the proposed method was verified using a dataset measured in an actual incineration plant, and the proposed method was able to accurately predict the product quality even when the plant was operated in five grades and when a new grade was produced.</p>","PeriodicalId":93411,"journal":{"name":"Analytical science advances","volume":"3 5-6","pages":"205-211"},"PeriodicalIF":3.0000,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/ansa.202200013","citationCount":"0","resultStr":"{\"title\":\"Adaptive soft sensor based on transfer learning and ensemble learning for multiple process states\",\"authors\":\"Nobuhito Yamada, Hiromasa Kaneko\",\"doi\":\"10.1002/ansa.202200013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The objective of this study is to develop an adaptive software sensor technique that can predict objective process variables for a target grade in a plant while also considering information related to various other grades. We use a dataset of the target grade as the target domain and those of the other grades as source domains to perform transfer learning. Multiple models or sub-models are constructed by setting a source domain for each grade and changing the number of samples used as the source domain. Furthermore, to prevent the negative transfer, the use of a source domain is automatically judged. In this study, we constructed sub-models using the locally weighted partial least squares approach as an adaptive soft sensor technique. The values of an objective variable were predicted with ensemble learning using sub-models. The effectiveness of the proposed method was verified using a dataset measured in an actual incineration plant, and the proposed method was able to accurately predict the product quality even when the plant was operated in five grades and when a new grade was produced.</p>\",\"PeriodicalId\":93411,\"journal\":{\"name\":\"Analytical science advances\",\"volume\":\"3 5-6\",\"pages\":\"205-211\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/ansa.202200013\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical science advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ansa.202200013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical science advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ansa.202200013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Adaptive soft sensor based on transfer learning and ensemble learning for multiple process states
The objective of this study is to develop an adaptive software sensor technique that can predict objective process variables for a target grade in a plant while also considering information related to various other grades. We use a dataset of the target grade as the target domain and those of the other grades as source domains to perform transfer learning. Multiple models or sub-models are constructed by setting a source domain for each grade and changing the number of samples used as the source domain. Furthermore, to prevent the negative transfer, the use of a source domain is automatically judged. In this study, we constructed sub-models using the locally weighted partial least squares approach as an adaptive soft sensor technique. The values of an objective variable were predicted with ensemble learning using sub-models. The effectiveness of the proposed method was verified using a dataset measured in an actual incineration plant, and the proposed method was able to accurately predict the product quality even when the plant was operated in five grades and when a new grade was produced.