过氧化氢浸泡在水培系统中提高藿香中生物活性化合物的含量

IF 1 4区 农林科学 Q3 AGRONOMY
Vu Phong Lam, Vu Ky Anh, Dao Nhan Loi, J. Park
{"title":"过氧化氢浸泡在水培系统中提高藿香中生物活性化合物的含量","authors":"Vu Phong Lam, Vu Ky Anh, Dao Nhan Loi, J. Park","doi":"10.1139/cjps-2022-0088","DOIUrl":null,"url":null,"abstract":"Abstract Hydrogen peroxide (H2O2) is a reactive oxygen species that can damage a variety of cellular structures. Recent studies have shown that H2O2 can mediate multiple physiological and biochemical processes by acting as a signaling molecule. This study was performed to explore the optimum H2O2 treatments for increasing the bioactive compounds in Agastache rugosa Fisch. & C.A. May plants with roots temporarily immersed in H2O2 concentrations of 0 (control), 4, 8, 16, 32, 64, and 128mmolL−1 in a hydroponic culture system. All cultivated plants were subjected to root soaking with diniconazole (120µmolL−1) at 7days after transplanting to restrict plant height. H2O2 concentrations of 4, 16, and 64mmolL−1 significantly reduced root length compared with no H2O2 treatment. Root fresh weight was significantly lower in response to exposure to 128mmolL−1 H2O2 compared with control plants. Although shoot and root dry weights were lower in plants exposed to 128mmolL−1 H2O2 compared with control plants, no significant differences were detected among treatments. Soaking roots in 16mmolL−1 H2O2 induced the highest rosmarinic acid (RA) content, and 16, 32, and 64mmolL−1 H2O2 significantly increased tilianin content in the whole plant compared with the control. The highest acacetin content was detected under 32mmolL−1 H2O2. In addition, root extract of A. rugosa had the highest RA concentration, and the tilianin concentration was the highest in flowers. Collectively, these results show that soaking roots in 16 and 32mmolL−1 H2O2 at 3.5weeks after transplanting promotes secondary metabolites of hydroponically grown A. rugosa.","PeriodicalId":9530,"journal":{"name":"Canadian Journal of Plant Science","volume":"103 1","pages":"39 - 47"},"PeriodicalIF":1.0000,"publicationDate":"2022-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Increasing bioactive compound levels in Agastache rugosa by hydrogen peroxide soaking in a hydroponic culture system\",\"authors\":\"Vu Phong Lam, Vu Ky Anh, Dao Nhan Loi, J. Park\",\"doi\":\"10.1139/cjps-2022-0088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Hydrogen peroxide (H2O2) is a reactive oxygen species that can damage a variety of cellular structures. Recent studies have shown that H2O2 can mediate multiple physiological and biochemical processes by acting as a signaling molecule. This study was performed to explore the optimum H2O2 treatments for increasing the bioactive compounds in Agastache rugosa Fisch. & C.A. May plants with roots temporarily immersed in H2O2 concentrations of 0 (control), 4, 8, 16, 32, 64, and 128mmolL−1 in a hydroponic culture system. All cultivated plants were subjected to root soaking with diniconazole (120µmolL−1) at 7days after transplanting to restrict plant height. H2O2 concentrations of 4, 16, and 64mmolL−1 significantly reduced root length compared with no H2O2 treatment. Root fresh weight was significantly lower in response to exposure to 128mmolL−1 H2O2 compared with control plants. Although shoot and root dry weights were lower in plants exposed to 128mmolL−1 H2O2 compared with control plants, no significant differences were detected among treatments. Soaking roots in 16mmolL−1 H2O2 induced the highest rosmarinic acid (RA) content, and 16, 32, and 64mmolL−1 H2O2 significantly increased tilianin content in the whole plant compared with the control. The highest acacetin content was detected under 32mmolL−1 H2O2. In addition, root extract of A. rugosa had the highest RA concentration, and the tilianin concentration was the highest in flowers. Collectively, these results show that soaking roots in 16 and 32mmolL−1 H2O2 at 3.5weeks after transplanting promotes secondary metabolites of hydroponically grown A. rugosa.\",\"PeriodicalId\":9530,\"journal\":{\"name\":\"Canadian Journal of Plant Science\",\"volume\":\"103 1\",\"pages\":\"39 - 47\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Plant Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1139/cjps-2022-0088\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/cjps-2022-0088","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

摘要过氧化氢(H2O2)是一种活性氧,可破坏多种细胞结构。最近的研究表明,H2O2可以作为信号分子介导多种生理生化过程。本研究旨在探索H2O2处理对增加藿香中生物活性化合物的最佳效果C.A.在水培培养系统中,根系暂时浸泡在浓度为0(对照)、4、8、16、32、64和128mmolL−1的H2O2中的植物。所有栽培植物在移植后7天用烯唑醇(120µmolL−1)浸根,以限制株高。与未经H2O2处理相比,4、16和64mmolL−1的H2O2浓度显著缩短了根长。与对照植物相比,暴露于128mmolL−1 H2O2的根鲜重显著降低。尽管与对照植物相比,暴露于128mmolL−1 H2O2的植物的地上部和根部干重较低,但不同处理之间没有发现显著差异。16mmol L−1 H2O2浸泡根诱导了最高的迷迭香酸(RA)含量,与对照相比,16、32和64mmolL−1的H2O2显著增加了整个植株中的tilianin含量。在32mmol L−1 H2O2作用下,杨梅素含量最高。此外,金合欢根提取物中RA浓度最高,花中tilianin浓度最高。总的来说,这些结果表明,在移植后3.5周,将根浸泡在16和32mmolL−1 H2O2中,可以促进水培栽培的皱皮藻的次生代谢产物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Increasing bioactive compound levels in Agastache rugosa by hydrogen peroxide soaking in a hydroponic culture system
Abstract Hydrogen peroxide (H2O2) is a reactive oxygen species that can damage a variety of cellular structures. Recent studies have shown that H2O2 can mediate multiple physiological and biochemical processes by acting as a signaling molecule. This study was performed to explore the optimum H2O2 treatments for increasing the bioactive compounds in Agastache rugosa Fisch. & C.A. May plants with roots temporarily immersed in H2O2 concentrations of 0 (control), 4, 8, 16, 32, 64, and 128mmolL−1 in a hydroponic culture system. All cultivated plants were subjected to root soaking with diniconazole (120µmolL−1) at 7days after transplanting to restrict plant height. H2O2 concentrations of 4, 16, and 64mmolL−1 significantly reduced root length compared with no H2O2 treatment. Root fresh weight was significantly lower in response to exposure to 128mmolL−1 H2O2 compared with control plants. Although shoot and root dry weights were lower in plants exposed to 128mmolL−1 H2O2 compared with control plants, no significant differences were detected among treatments. Soaking roots in 16mmolL−1 H2O2 induced the highest rosmarinic acid (RA) content, and 16, 32, and 64mmolL−1 H2O2 significantly increased tilianin content in the whole plant compared with the control. The highest acacetin content was detected under 32mmolL−1 H2O2. In addition, root extract of A. rugosa had the highest RA concentration, and the tilianin concentration was the highest in flowers. Collectively, these results show that soaking roots in 16 and 32mmolL−1 H2O2 at 3.5weeks after transplanting promotes secondary metabolites of hydroponically grown A. rugosa.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
8.30%
发文量
91
审稿时长
1 months
期刊介绍: Published since 1957, the Canadian Journal of Plant Science is a bimonthly journal that contains new research on all aspects of plant science relevant to continental climate agriculture, including plant production and management (grain, forage, industrial, and alternative crops), horticulture (fruit, vegetable, ornamental, greenhouse, and alternative crops), and pest management (entomology, plant pathology, and weed science). Cross-disciplinary research in the application of technology, plant breeding, genetics, physiology, biotechnology, microbiology, soil management, economics, meteorology, post-harvest biology, and plant production systems is also published. Research that makes a significant contribution to the advancement of knowledge of crop, horticulture, and weed sciences (e.g., drought or stress resistance), but not directly applicable to the environmental regions of Canadian agriculture, may also be considered. The Journal also publishes reviews, letters to the editor, the abstracts of technical papers presented at the meetings of the sponsoring societies, and occasionally conference proceedings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信