基于分类加权深度神经网络的大规模MIMO-OFDM系统信道均衡

IF 0.5 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Wenhang Ge, C. Qi, Y. Guo, L. Qian, R. Tong, P. Wei
{"title":"基于分类加权深度神经网络的大规模MIMO-OFDM系统信道均衡","authors":"Wenhang Ge, C. Qi, Y. Guo, L. Qian, R. Tong, P. Wei","doi":"10.13164/re.2022.0346","DOIUrl":null,"url":null,"abstract":". Massive multi-input multi-output (MIMO) has attracted significant interest in academia and industry, which can efficiently increase the transmission rate. However, the error rate of conventional channel equalizations in massive MIMO systems may be high owing to the dynamic channel states in practical conditions. To solve this problem, in this paper, we propose an improved channel equalization framework based on the deep neural network (DNN). Based on the analyzed relationship between the input and output of the DNN, the data can be recovered without the channel state information. Furthermore, aiming at reducing the convergence time and enhancing the learning ability of the DNN, a classification weighted algorithm is proposed to optimize the cost function of the DNN, which is named as classification weighted deep neural network (CW-DNN). Simulation results demonstrate that compared to conventional counterparts, the proposed CW-DNN based equalizer can achieve a better normalized mean square error (NMSE). Upon approximating the optimal neural network parameters with the significantly improved convergence speed and reduced training time of the network, under the condition of the fixed learning rate.","PeriodicalId":54514,"journal":{"name":"Radioengineering","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification Weighted Deep Neural Network Based Channel Equalization for Massive MIMO-OFDM Systems\",\"authors\":\"Wenhang Ge, C. Qi, Y. Guo, L. Qian, R. Tong, P. Wei\",\"doi\":\"10.13164/re.2022.0346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Massive multi-input multi-output (MIMO) has attracted significant interest in academia and industry, which can efficiently increase the transmission rate. However, the error rate of conventional channel equalizations in massive MIMO systems may be high owing to the dynamic channel states in practical conditions. To solve this problem, in this paper, we propose an improved channel equalization framework based on the deep neural network (DNN). Based on the analyzed relationship between the input and output of the DNN, the data can be recovered without the channel state information. Furthermore, aiming at reducing the convergence time and enhancing the learning ability of the DNN, a classification weighted algorithm is proposed to optimize the cost function of the DNN, which is named as classification weighted deep neural network (CW-DNN). Simulation results demonstrate that compared to conventional counterparts, the proposed CW-DNN based equalizer can achieve a better normalized mean square error (NMSE). Upon approximating the optimal neural network parameters with the significantly improved convergence speed and reduced training time of the network, under the condition of the fixed learning rate.\",\"PeriodicalId\":54514,\"journal\":{\"name\":\"Radioengineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.13164/re.2022.0346\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.13164/re.2022.0346","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

. 大规模多输入多输出(Massive multi-input multi-output, MIMO)技术能够有效地提高传输速率,引起了学术界和工业界的广泛关注。然而,由于实际条件下的动态信道状态,传统的信道均衡方法在大规模MIMO系统中存在较高的误差率。为了解决这一问题,本文提出了一种改进的基于深度神经网络(DNN)的信道均衡框架。在分析深度神经网络输入输出关系的基础上,可以在没有信道状态信息的情况下恢复数据。此外,为了缩短深度神经网络的收敛时间和增强其学习能力,提出了一种分类加权算法来优化深度神经网络的代价函数,并将其命名为分类加权深度神经网络(CW-DNN)。仿真结果表明,与传统均衡器相比,基于CW-DNN的均衡器可以获得更好的归一化均方误差(NMSE)。在固定学习率的条件下,逼近最优神经网络参数,显著提高了网络的收敛速度,减少了网络的训练时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification Weighted Deep Neural Network Based Channel Equalization for Massive MIMO-OFDM Systems
. Massive multi-input multi-output (MIMO) has attracted significant interest in academia and industry, which can efficiently increase the transmission rate. However, the error rate of conventional channel equalizations in massive MIMO systems may be high owing to the dynamic channel states in practical conditions. To solve this problem, in this paper, we propose an improved channel equalization framework based on the deep neural network (DNN). Based on the analyzed relationship between the input and output of the DNN, the data can be recovered without the channel state information. Furthermore, aiming at reducing the convergence time and enhancing the learning ability of the DNN, a classification weighted algorithm is proposed to optimize the cost function of the DNN, which is named as classification weighted deep neural network (CW-DNN). Simulation results demonstrate that compared to conventional counterparts, the proposed CW-DNN based equalizer can achieve a better normalized mean square error (NMSE). Upon approximating the optimal neural network parameters with the significantly improved convergence speed and reduced training time of the network, under the condition of the fixed learning rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Radioengineering
Radioengineering 工程技术-工程:电子与电气
CiteScore
2.00
自引率
9.10%
发文量
0
审稿时长
5.7 months
期刊介绍: Since 1992, the Radioengineering Journal has been publishing original scientific and engineering papers from the area of wireless communication and application of wireless technologies. The submitted papers are expected to deal with electromagnetics (antennas, propagation, microwaves), signals, circuits, optics and related fields. Each issue of the Radioengineering Journal is started by a feature article. Feature articles are organized by members of the Editorial Board to present the latest development in the selected areas of radio engineering. The Radioengineering Journal makes a maximum effort to publish submitted papers as quickly as possible. The first round of reviews should be completed within two months. Then, authors are expected to improve their manuscript within one month. If substantial changes are recommended and further reviews are requested by the reviewers, the publication time is prolonged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信