用于应变传感器的可穿戴和可拉伸导电聚合物复合材料:如何设计一种优越的?

IF 9.9 2区 材料科学 Q1 Engineering
Liwei Lin , Sumin Park , Yuri Kim , Minjun Bae , Jeongyeon Lee , Wang Zhang , Jiefeng Gao , Sun Ha Paek , Yuanzhe Piao
{"title":"用于应变传感器的可穿戴和可拉伸导电聚合物复合材料:如何设计一种优越的?","authors":"Liwei Lin ,&nbsp;Sumin Park ,&nbsp;Yuri Kim ,&nbsp;Minjun Bae ,&nbsp;Jeongyeon Lee ,&nbsp;Wang Zhang ,&nbsp;Jiefeng Gao ,&nbsp;Sun Ha Paek ,&nbsp;Yuanzhe Piao","doi":"10.1016/j.nanoms.2022.08.003","DOIUrl":null,"url":null,"abstract":"<div><div>Wearable and stretchable strain sensors have potential values in the fields of human motion and health monitoring, flexible electronics, and soft robotic skin. The wearable and stretchable strain sensors can be directly attached to human skin, providing visualized detection for human motions and personal healthcare. Conductive polymer composites (CPC) composed of conductive fillers and flexible polymers have the advantages of high stretchability, good flexibility, superior durability, which can be used to prepare flexible strain sensors with large working strain and outstanding sensitivity. This review has put forward a comprehensive summary on the fabrication methods, advanced mechanisms and strain sensing abilities of CPC strain sensors reported in recent years, especially the sensors with superior performance. Finally, the structural design, bionic function, integration technology and further application of CPC strain sensors are prospected.</div></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":"5 4","pages":"Pages 392-403"},"PeriodicalIF":9.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wearable and stretchable conductive polymer composites for strain sensors: How to design a superior one?\",\"authors\":\"Liwei Lin ,&nbsp;Sumin Park ,&nbsp;Yuri Kim ,&nbsp;Minjun Bae ,&nbsp;Jeongyeon Lee ,&nbsp;Wang Zhang ,&nbsp;Jiefeng Gao ,&nbsp;Sun Ha Paek ,&nbsp;Yuanzhe Piao\",\"doi\":\"10.1016/j.nanoms.2022.08.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Wearable and stretchable strain sensors have potential values in the fields of human motion and health monitoring, flexible electronics, and soft robotic skin. The wearable and stretchable strain sensors can be directly attached to human skin, providing visualized detection for human motions and personal healthcare. Conductive polymer composites (CPC) composed of conductive fillers and flexible polymers have the advantages of high stretchability, good flexibility, superior durability, which can be used to prepare flexible strain sensors with large working strain and outstanding sensitivity. This review has put forward a comprehensive summary on the fabrication methods, advanced mechanisms and strain sensing abilities of CPC strain sensors reported in recent years, especially the sensors with superior performance. Finally, the structural design, bionic function, integration technology and further application of CPC strain sensors are prospected.</div></div>\",\"PeriodicalId\":33573,\"journal\":{\"name\":\"Nano Materials Science\",\"volume\":\"5 4\",\"pages\":\"Pages 392-403\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Materials Science\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589965122000484\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Materials Science","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589965122000484","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Wearable and stretchable conductive polymer composites for strain sensors: How to design a superior one?

Wearable and stretchable conductive polymer composites for strain sensors: How to design a superior one?

Wearable and stretchable conductive polymer composites for strain sensors: How to design a superior one?
Wearable and stretchable strain sensors have potential values in the fields of human motion and health monitoring, flexible electronics, and soft robotic skin. The wearable and stretchable strain sensors can be directly attached to human skin, providing visualized detection for human motions and personal healthcare. Conductive polymer composites (CPC) composed of conductive fillers and flexible polymers have the advantages of high stretchability, good flexibility, superior durability, which can be used to prepare flexible strain sensors with large working strain and outstanding sensitivity. This review has put forward a comprehensive summary on the fabrication methods, advanced mechanisms and strain sensing abilities of CPC strain sensors reported in recent years, especially the sensors with superior performance. Finally, the structural design, bionic function, integration technology and further application of CPC strain sensors are prospected.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Materials Science
Nano Materials Science Engineering-Mechanics of Materials
CiteScore
20.90
自引率
3.00%
发文量
294
审稿时长
9 weeks
期刊介绍: Nano Materials Science (NMS) is an international and interdisciplinary, open access, scholarly journal. NMS publishes peer-reviewed original articles and reviews on nanoscale material science and nanometer devices, with topics encompassing preparation and processing; high-throughput characterization; material performance evaluation and application of material characteristics such as the microstructure and properties of one-dimensional, two-dimensional, and three-dimensional nanostructured and nanofunctional materials; design, preparation, and processing techniques; and performance evaluation technology and nanometer device applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信