HIV-1模型的阈值动力学,包括病毒到细胞和细胞到细胞的传播、免疫反应和三次延迟

IF 1.4 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY
H. Miao, Meiyan Jiao
{"title":"HIV-1模型的阈值动力学,包括病毒到细胞和细胞到细胞的传播、免疫反应和三次延迟","authors":"H. Miao, Meiyan Jiao","doi":"10.1515/ijnsns-2021-0263","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, the dynamical behaviors of a multiple delayed HIV-1 infection model which describes the interactions of humoral, cytotoxic T lymphocyte (CTL) immune responses, and two modes of transmission that are the classical virus-to-cell infection and the direct cell-to-cell transmission are investigated. The model incorporates three delays, including the delays of cell infection, virus production and activation of immune response. We first prove the well-posedness of the model, and calculate the biological existence of equilibria and the reproduction numbers, which contain virus infection, humoral immune response, CTL immune response, CTL immune competition, and humoral immune competition. Further, the threshold conditions for the local and global stability of the equilibria for infection-free, immune-free, antibody response, CTL response, and interior are established by utilizing linearization method and the Lyapunov functionals. The existence of Hopf bifurcation with immune delay as a bifurcation parameter is investigated by using the bifurcation theory. Numerical simulations are carried out to illustrate the theoretical results and reveal the effects of some key parameters on viral dynamics.","PeriodicalId":50304,"journal":{"name":"International Journal of Nonlinear Sciences and Numerical Simulation","volume":"24 1","pages":"437 - 466"},"PeriodicalIF":1.4000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Threshold dynamics of an HIV-1 model with both virus-to-cell and cell-to-cell transmissions, immune responses, and three delays\",\"authors\":\"H. Miao, Meiyan Jiao\",\"doi\":\"10.1515/ijnsns-2021-0263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, the dynamical behaviors of a multiple delayed HIV-1 infection model which describes the interactions of humoral, cytotoxic T lymphocyte (CTL) immune responses, and two modes of transmission that are the classical virus-to-cell infection and the direct cell-to-cell transmission are investigated. The model incorporates three delays, including the delays of cell infection, virus production and activation of immune response. We first prove the well-posedness of the model, and calculate the biological existence of equilibria and the reproduction numbers, which contain virus infection, humoral immune response, CTL immune response, CTL immune competition, and humoral immune competition. Further, the threshold conditions for the local and global stability of the equilibria for infection-free, immune-free, antibody response, CTL response, and interior are established by utilizing linearization method and the Lyapunov functionals. The existence of Hopf bifurcation with immune delay as a bifurcation parameter is investigated by using the bifurcation theory. Numerical simulations are carried out to illustrate the theoretical results and reveal the effects of some key parameters on viral dynamics.\",\"PeriodicalId\":50304,\"journal\":{\"name\":\"International Journal of Nonlinear Sciences and Numerical Simulation\",\"volume\":\"24 1\",\"pages\":\"437 - 466\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nonlinear Sciences and Numerical Simulation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/ijnsns-2021-0263\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nonlinear Sciences and Numerical Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijnsns-2021-0263","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文研究了HIV-1多重延迟感染模型的动力学行为,该模型描述了体液、细胞毒性T淋巴细胞(CTL)免疫反应的相互作用,以及经典病毒-细胞感染和直接细胞-细胞传播两种传播模式。该模型包含三种延迟,包括细胞感染延迟、病毒产生延迟和免疫反应激活延迟。首先证明了模型的适定性,并计算了包含病毒感染、体液免疫应答、CTL免疫应答、CTL免疫竞争和体液免疫竞争的平衡的生物存在性和繁殖数。利用线性化方法和Lyapunov泛函建立了无感染、无免疫、抗体反应、CTL反应和内部平衡的局部和全局稳定性的阈值条件。利用分岔理论,研究了以免疫延迟为分岔参数的Hopf分岔的存在性。数值模拟验证了理论结果,揭示了一些关键参数对病毒动力学的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Threshold dynamics of an HIV-1 model with both virus-to-cell and cell-to-cell transmissions, immune responses, and three delays
Abstract In this paper, the dynamical behaviors of a multiple delayed HIV-1 infection model which describes the interactions of humoral, cytotoxic T lymphocyte (CTL) immune responses, and two modes of transmission that are the classical virus-to-cell infection and the direct cell-to-cell transmission are investigated. The model incorporates three delays, including the delays of cell infection, virus production and activation of immune response. We first prove the well-posedness of the model, and calculate the biological existence of equilibria and the reproduction numbers, which contain virus infection, humoral immune response, CTL immune response, CTL immune competition, and humoral immune competition. Further, the threshold conditions for the local and global stability of the equilibria for infection-free, immune-free, antibody response, CTL response, and interior are established by utilizing linearization method and the Lyapunov functionals. The existence of Hopf bifurcation with immune delay as a bifurcation parameter is investigated by using the bifurcation theory. Numerical simulations are carried out to illustrate the theoretical results and reveal the effects of some key parameters on viral dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
6.70%
发文量
117
审稿时长
13.7 months
期刊介绍: The International Journal of Nonlinear Sciences and Numerical Simulation publishes original papers on all subjects relevant to nonlinear sciences and numerical simulation. The journal is directed at Researchers in Nonlinear Sciences, Engineers, and Computational Scientists, Economists, and others, who either study the nature of nonlinear problems or conduct numerical simulations of nonlinear problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信