典型拓扑结构FeGa/AlN磁电器件的制备与性能研究

IF 1.6 4区 物理与天体物理 Q3 PHYSICS, APPLIED
Xiao Zhang, Fan Li, Tianxin Wu, Jie Zhu
{"title":"典型拓扑结构FeGa/AlN磁电器件的制备与性能研究","authors":"Xiao Zhang,&nbsp;Fan Li,&nbsp;Tianxin Wu,&nbsp;Jie Zhu","doi":"10.1007/s10948-023-06539-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, the mask method is applied to design a variety of topological structures in the magnetic layer. Different topological Mo/FeGa/AlN magnetoelectric (ME) devices were fabricated. Controlling the stress conduction mode between the magnetostrictive phase and the piezoelectric phase is one of the goals that enables the coexistence of normal stress and shear stress. In order to improve the ME performance of devices, the second purpose is to induce the ME anisotropy of devices through the magnetostrictive anisotropy caused by the topological structure. The circular topological Mo/FeGa/AlN devices produce the largest ME coupling coefficient along the length direction (7071 mV/cm Oe), which is 1.84 times higher than that of the planar devices (3853 mV/cm Oe). The maximum ME anisotropy coefficient (4.612) is determined from the strip topology ME device, which is 2.45 times higher than that of the planar device.</p></div>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":"36 3","pages":"1025 - 1032"},"PeriodicalIF":1.6000,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation and Properties of FeGa/AlN Magnetoelectric Device with Typical Topological Structures\",\"authors\":\"Xiao Zhang,&nbsp;Fan Li,&nbsp;Tianxin Wu,&nbsp;Jie Zhu\",\"doi\":\"10.1007/s10948-023-06539-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, the mask method is applied to design a variety of topological structures in the magnetic layer. Different topological Mo/FeGa/AlN magnetoelectric (ME) devices were fabricated. Controlling the stress conduction mode between the magnetostrictive phase and the piezoelectric phase is one of the goals that enables the coexistence of normal stress and shear stress. In order to improve the ME performance of devices, the second purpose is to induce the ME anisotropy of devices through the magnetostrictive anisotropy caused by the topological structure. The circular topological Mo/FeGa/AlN devices produce the largest ME coupling coefficient along the length direction (7071 mV/cm Oe), which is 1.84 times higher than that of the planar devices (3853 mV/cm Oe). The maximum ME anisotropy coefficient (4.612) is determined from the strip topology ME device, which is 2.45 times higher than that of the planar device.</p></div>\",\"PeriodicalId\":669,\"journal\":{\"name\":\"Journal of Superconductivity and Novel Magnetism\",\"volume\":\"36 3\",\"pages\":\"1025 - 1032\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Superconductivity and Novel Magnetism\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10948-023-06539-y\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superconductivity and Novel Magnetism","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10948-023-06539-y","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,应用掩模方法设计了磁性层中的各种拓扑结构。制备了不同拓扑的Mo/FeGa/AlN磁电器件。控制磁致伸缩相和压电相之间的应力传导模式是实现正应力和剪应力共存的目标之一。为了提高器件的ME性能,第二个目的是通过拓扑结构引起的磁致伸缩各向异性来诱导器件的ME各向异性。圆形拓扑Mo/FeGa/AlN器件在长度方向上产生最大的ME耦合系数(7071 mV/cm Oe),是平面器件(3853 mV/cm Oe)的1.84倍。条形拓扑的ME器件最大各向异性系数为4.612,是平面器件的2.45倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preparation and Properties of FeGa/AlN Magnetoelectric Device with Typical Topological Structures

In this work, the mask method is applied to design a variety of topological structures in the magnetic layer. Different topological Mo/FeGa/AlN magnetoelectric (ME) devices were fabricated. Controlling the stress conduction mode between the magnetostrictive phase and the piezoelectric phase is one of the goals that enables the coexistence of normal stress and shear stress. In order to improve the ME performance of devices, the second purpose is to induce the ME anisotropy of devices through the magnetostrictive anisotropy caused by the topological structure. The circular topological Mo/FeGa/AlN devices produce the largest ME coupling coefficient along the length direction (7071 mV/cm Oe), which is 1.84 times higher than that of the planar devices (3853 mV/cm Oe). The maximum ME anisotropy coefficient (4.612) is determined from the strip topology ME device, which is 2.45 times higher than that of the planar device.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Superconductivity and Novel Magnetism
Journal of Superconductivity and Novel Magnetism 物理-物理:凝聚态物理
CiteScore
3.70
自引率
11.10%
发文量
342
审稿时长
3.5 months
期刊介绍: The Journal of Superconductivity and Novel Magnetism serves as the international forum for the most current research and ideas in these fields. This highly acclaimed journal publishes peer-reviewed original papers, conference proceedings and invited review articles that examine all aspects of the science and technology of superconductivity, including new materials, new mechanisms, basic and technological properties, new phenomena, and small- and large-scale applications. Novel magnetism, which is expanding rapidly, is also featured in the journal. The journal focuses on such areas as spintronics, magnetic semiconductors, properties of magnetic multilayers, magnetoresistive materials and structures, magnetic oxides, etc. Novel superconducting and magnetic materials are complex compounds, and the journal publishes articles related to all aspects their study, such as sample preparation, spectroscopy and transport properties as well as various applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信