强单元对超阿基米德格序群的附加

IF 0.6 4区 数学 Q3 MATHEMATICS
Philip Scowcroft
{"title":"强单元对超阿基米德格序群的附加","authors":"Philip Scowcroft","doi":"10.1007/s00012-023-00803-x","DOIUrl":null,"url":null,"abstract":"<div><p>This paper studies conditions in which a hyperarchimedean lattice-ordered group embeds into a hyperarchimedean lattice-ordered group with strong unit. While Conrad and Martinez showed that some hyperarchimedean lattice-ordered groups do not admit such embeddings, Section 3 presents a sufficient condition, in terms of the generalized Boolean algebra of principal <span>\\(\\ell \\)</span>-ideals, for the existence of such an embedding. Section 4 presents new examples of hyperarchimedean lattice-ordered groups not admitting such embeddings, while Section 5 shows that even when such an embedding exists, adjunction of a strong unit may yield non-isomorphic hyperarchimedean extensions. Section 6 shows that if one assumes the existence of weakly compact cardinals, then the sufficient condition from Section 3 is not necessary; and Section 7 studies the logical complexity of the condition “embeddable into a hyperarchimedean lattice-ordered group with strong unit.”</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00012-023-00803-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Adjunction of a strong unit to a hyper-archimedean lattice-ordered group\",\"authors\":\"Philip Scowcroft\",\"doi\":\"10.1007/s00012-023-00803-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper studies conditions in which a hyperarchimedean lattice-ordered group embeds into a hyperarchimedean lattice-ordered group with strong unit. While Conrad and Martinez showed that some hyperarchimedean lattice-ordered groups do not admit such embeddings, Section 3 presents a sufficient condition, in terms of the generalized Boolean algebra of principal <span>\\\\(\\\\ell \\\\)</span>-ideals, for the existence of such an embedding. Section 4 presents new examples of hyperarchimedean lattice-ordered groups not admitting such embeddings, while Section 5 shows that even when such an embedding exists, adjunction of a strong unit may yield non-isomorphic hyperarchimedean extensions. Section 6 shows that if one assumes the existence of weakly compact cardinals, then the sufficient condition from Section 3 is not necessary; and Section 7 studies the logical complexity of the condition “embeddable into a hyperarchimedean lattice-ordered group with strong unit.”</p></div>\",\"PeriodicalId\":50827,\"journal\":{\"name\":\"Algebra Universalis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00012-023-00803-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra Universalis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00012-023-00803-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Universalis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00012-023-00803-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一个超无政府格序群嵌入到具有强单位的超无政府晶格序群中的条件。Conrad和Martinez证明了一些超无政府格序群不允许这种嵌入,而第3节则根据主理想的广义布尔代数给出了存在这种嵌入的充分条件。第4节给出了不允许这种嵌入的超无政府格序群的新例子,而第5节表明,即使存在这种嵌入,强单元的附加也可能产生非同构超无政府扩展。第6节表明,如果假设存在弱紧基数,那么第3节中的充分条件是不必要的;第7节研究了条件“嵌入到具有强单位的超无政府格序群中”的逻辑复杂性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adjunction of a strong unit to a hyper-archimedean lattice-ordered group

This paper studies conditions in which a hyperarchimedean lattice-ordered group embeds into a hyperarchimedean lattice-ordered group with strong unit. While Conrad and Martinez showed that some hyperarchimedean lattice-ordered groups do not admit such embeddings, Section 3 presents a sufficient condition, in terms of the generalized Boolean algebra of principal \(\ell \)-ideals, for the existence of such an embedding. Section 4 presents new examples of hyperarchimedean lattice-ordered groups not admitting such embeddings, while Section 5 shows that even when such an embedding exists, adjunction of a strong unit may yield non-isomorphic hyperarchimedean extensions. Section 6 shows that if one assumes the existence of weakly compact cardinals, then the sufficient condition from Section 3 is not necessary; and Section 7 studies the logical complexity of the condition “embeddable into a hyperarchimedean lattice-ordered group with strong unit.”

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebra Universalis
Algebra Universalis 数学-数学
CiteScore
1.00
自引率
16.70%
发文量
34
审稿时长
3 months
期刊介绍: Algebra Universalis publishes papers in universal algebra, lattice theory, and related fields. In a pragmatic way, one could define the areas of interest of the journal as the union of the areas of interest of the members of the Editorial Board. In addition to research papers, we are also interested in publishing high quality survey articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信