Al-6Si-3Cu-0.4Mg半固态压铸合金偏析、显微组织及力学性能演变

Q1 Engineering
Jian Feng , Zikang Liu , Daquan Li , Jiahui Zhu , Song Chen , Fan Zhang , Fan Zhang , Xianchao Hao
{"title":"Al-6Si-3Cu-0.4Mg半固态压铸合金偏析、显微组织及力学性能演变","authors":"Jian Feng ,&nbsp;Zikang Liu ,&nbsp;Daquan Li ,&nbsp;Jiahui Zhu ,&nbsp;Song Chen ,&nbsp;Fan Zhang ,&nbsp;Fan Zhang ,&nbsp;Xianchao Hao","doi":"10.1016/j.ijlmm.2022.11.002","DOIUrl":null,"url":null,"abstract":"<div><p>Study on segregation, microstructure and mechanical properties of Al–6Si–3Cu–0.4Mg alloy was achieved by controlling the filling length in semisolid die casting. Results show that the microstructure is comprised of globular α–Al, eutectic Si, θ–Al<sub>2</sub>Cu, Q–Al<sub>5</sub>Cu<sub>2</sub>Mg<sub>8</sub>Si<sub>6</sub> and Fe–rich phase. After solution–ageing treatment, abundant θ–Al<sub>2</sub>Cu and Q–Al<sub>5</sub>Cu<sub>2</sub>Mg<sub>8</sub>Si<sub>6</sub> phases dissolve into the matrix. The liquid difference between the edge and middle area is 21.3% for 1/3 filling length, which is much higher than that of 15.0% for full filling length. As the filling length decreases, the increment of segregation degree at the bottom of the sample is detected. This segregation behavior leads to the strength and ductility both decreases from 425.0 MPa and 6.5% for 1/3 filling length to 405.3 MPa and 4.4% for full filling length, respectively. Besides, along with the formation of abundant fine θ–Al<sub>2</sub>Cu phase and higher liquid fraction at the edge area, the ultimate tensile strength and elongation reaches 443.5 MPa and 5.2%. While in center area, the occurrence of coarsen θ–Al<sub>2</sub>Cu phases leads to the tensile properties dramatically reducing to 378.7 MPa and 1.9%.</p></div>","PeriodicalId":52306,"journal":{"name":"International Journal of Lightweight Materials and Manufacture","volume":"6 2","pages":"Pages 245-253"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Evolution of segregation, microstructure and mechanical properties of a semisolid die casting Al–6Si–3Cu–0.4Mg alloy\",\"authors\":\"Jian Feng ,&nbsp;Zikang Liu ,&nbsp;Daquan Li ,&nbsp;Jiahui Zhu ,&nbsp;Song Chen ,&nbsp;Fan Zhang ,&nbsp;Fan Zhang ,&nbsp;Xianchao Hao\",\"doi\":\"10.1016/j.ijlmm.2022.11.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Study on segregation, microstructure and mechanical properties of Al–6Si–3Cu–0.4Mg alloy was achieved by controlling the filling length in semisolid die casting. Results show that the microstructure is comprised of globular α–Al, eutectic Si, θ–Al<sub>2</sub>Cu, Q–Al<sub>5</sub>Cu<sub>2</sub>Mg<sub>8</sub>Si<sub>6</sub> and Fe–rich phase. After solution–ageing treatment, abundant θ–Al<sub>2</sub>Cu and Q–Al<sub>5</sub>Cu<sub>2</sub>Mg<sub>8</sub>Si<sub>6</sub> phases dissolve into the matrix. The liquid difference between the edge and middle area is 21.3% for 1/3 filling length, which is much higher than that of 15.0% for full filling length. As the filling length decreases, the increment of segregation degree at the bottom of the sample is detected. This segregation behavior leads to the strength and ductility both decreases from 425.0 MPa and 6.5% for 1/3 filling length to 405.3 MPa and 4.4% for full filling length, respectively. Besides, along with the formation of abundant fine θ–Al<sub>2</sub>Cu phase and higher liquid fraction at the edge area, the ultimate tensile strength and elongation reaches 443.5 MPa and 5.2%. While in center area, the occurrence of coarsen θ–Al<sub>2</sub>Cu phases leads to the tensile properties dramatically reducing to 378.7 MPa and 1.9%.</p></div>\",\"PeriodicalId\":52306,\"journal\":{\"name\":\"International Journal of Lightweight Materials and Manufacture\",\"volume\":\"6 2\",\"pages\":\"Pages 245-253\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Lightweight Materials and Manufacture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2588840422000762\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Lightweight Materials and Manufacture","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588840422000762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 3

摘要

通过控制半固态压铸中的填充长度,对Al–6Si–3Cu–0.4Mg合金的偏析、组织和力学性能进行了研究。结果表明,显微组织由球状α–Al、共晶Si、θ–Al2Cu、Q–Al5Cu2Mg8Si6和富Fe相组成。固溶-时效处理后,大量的θ–Al2Cu和Q–Al5Cu2Mg8Si6相溶解到基体中。对于1/3填充长度,边缘和中间区域之间的液体差为21.3%,远高于全填充长度的15.0%。随着填充长度的减小,检测到样品底部偏析程度的增加。这种偏析行为导致强度和延性分别从1/3填充长度的425.0MPa和6.5%下降到全填充长度的405.3MPa和4.4%。此外,随着在边缘区域形成丰富的细θ–Al2Cu相和较高的液体分数,极限抗拉强度和伸长率分别达到443.5MPa和5.2%。而在中心区域,θ–Al2Cu相的出现导致拉伸性能显著降低至378.7MPa和1.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolution of segregation, microstructure and mechanical properties of a semisolid die casting Al–6Si–3Cu–0.4Mg alloy

Study on segregation, microstructure and mechanical properties of Al–6Si–3Cu–0.4Mg alloy was achieved by controlling the filling length in semisolid die casting. Results show that the microstructure is comprised of globular α–Al, eutectic Si, θ–Al2Cu, Q–Al5Cu2Mg8Si6 and Fe–rich phase. After solution–ageing treatment, abundant θ–Al2Cu and Q–Al5Cu2Mg8Si6 phases dissolve into the matrix. The liquid difference between the edge and middle area is 21.3% for 1/3 filling length, which is much higher than that of 15.0% for full filling length. As the filling length decreases, the increment of segregation degree at the bottom of the sample is detected. This segregation behavior leads to the strength and ductility both decreases from 425.0 MPa and 6.5% for 1/3 filling length to 405.3 MPa and 4.4% for full filling length, respectively. Besides, along with the formation of abundant fine θ–Al2Cu phase and higher liquid fraction at the edge area, the ultimate tensile strength and elongation reaches 443.5 MPa and 5.2%. While in center area, the occurrence of coarsen θ–Al2Cu phases leads to the tensile properties dramatically reducing to 378.7 MPa and 1.9%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Lightweight Materials and Manufacture
International Journal of Lightweight Materials and Manufacture Engineering-Industrial and Manufacturing Engineering
CiteScore
9.90
自引率
0.00%
发文量
52
审稿时长
48 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信